分析:8分32秒=512(秒).
①當(dāng)兩人共行1個單程時第1次迎面相遇,共行3個單程時第2次迎面相遇,共行2n-1個單程時第n次迎面相遇.
因為共行1個單程需100÷(6.25+3.75)=10(秒),所以第n次相遇需10×(2n-1)秒,
由10×(2n-1)=510,解得n=26,即510秒時第26次迎面相遇.
、诖藭r,乙共行3.75×510=1912.5(米),離10個來回還差200×10-1912.5=87.5(米),即最后一次相遇地點距乙的起點87.5米.
③類似的,當(dāng)甲比乙多行1個單程時,甲第1次追上乙,多行3個單程時,甲第2次追上乙,多行2n-1個單程時,甲第n次追上乙.因為多行1個單程需100÷(6.25-3.75)=40(秒),所以第n次追上乙需40×(2n-1)秒.當(dāng)n=6時,40×(2n
-1)=440<512;當(dāng)n=7時,40×(2n-1)=520>512,所以在512秒內(nèi)甲共追上乙6次.
解答:解:①當(dāng)兩人共行1 個單程時第1 次迎面相遇,共行3 個單程時第2 次迎面相遇,共行2n-1個單程時第n次迎面相遇.
因為共行1 個單程需100÷(6.25+3.75)=10(秒),
8 分32秒=512秒,(512-10)÷(10×2)≈25(次),所以25+1=26(次).
、谧詈笠淮蜗嘤龅攸c距乙的起點:
200×10-3.75×510,
=2000-1912.5,
=87.5(米).
、鄱嘈1個單程需100÷(6.25-3.75)=40(秒),所以第n次追上乙需40×(2n-1)秒.
當(dāng)n=6時,40×(2n-1)=440<512;當(dāng)n=7時,40×(2n-1)=520>512,所以在512秒內(nèi)甲共追上乙6次.
故答案為:87.5米;6次;26次.
點評:此題屬于多次相遇問題,比較復(fù)雜,要認(rèn)真分析,考查學(xué)生分析判斷能力.
編輯推薦