奧數(shù)學(xué)習(xí)有利于訓(xùn)練孩子的思維能力,讓孩子在解題的過程中能夠從不同的角度進行思考。下面是奧數(shù)網(wǎng)小編整理的小學(xué)五年級奧數(shù)題及解析,大家可以看下。
“比和比例”應(yīng)用題
例1某車間要加工2220個零件,單獨做,甲、乙、丙三人所需工作時間的比是4∶5∶6,F(xiàn)在由三人共同加工,問完成任務(wù)時,三人各加工了多少個?
錯解由甲、乙、丙三人單獨做所需工作時間的比是4∶5∶6,推出甲、乙、丙三人工作效率的比是6∶5∶4,用按比例分配的思路解。
評析上述解答錯在把甲、乙、丙三人工作效率的比看成是6∶5∶4。誠然,如果甲、乙二人工作時間的比是4∶5,那么,甲、乙二人工作效率的比就是5∶4,這是正確的。但是,把甲、乙、丙三人工作時間的連比是4∶5∶6轉(zhuǎn)化成甲、乙、丙三人工作效率的連比是6∶5∶4,那就大錯了!不錯,工作效率的比等于工作時間比的反比。從已知條件看,甲、乙二人工作時間的比是4∶5,所以,甲、乙二人工作效率的比是5∶4;乙、丙二人工作時間的比是5∶6,所以,乙、丙二人工作效率的比是6∶5。這里的“5∶4”表示甲5份,乙4份,“6∶5”表示乙6份,丙5分,兩個比都是兩重相比,其中同樣表示“乙”有幾份的數(shù)在前后兩個比中并不相同,我們怎么能將這兩個比直接變成甲、乙、丙三人工作效率的連比呢?顯然,上述解答中把甲、乙、丙三人工作效率的連比看成是6∶5∶4,是錯誤的。
容易看出,因為5∶4=15∶12,6∶5=12∶10,所以,由上述“甲、乙二人工作效率的比是5∶4,乙、丙二人工作效率的比是6∶5”,也可以得到甲、乙、丙三人工作效率的比是是15∶12∶10。
例2有兩瓶同樣重的鹽水,甲瓶鹽水鹽與水重量的比是1∶8,乙瓶鹽水鹽與水重量的比是1:5。現(xiàn)將兩瓶鹽水并在一起,問在混合后的鹽水中鹽與水重量的比是多少?
錯解認為在甲瓶鹽水中,鹽的重量是“1”,水的重量是“8”,在乙瓶鹽水中,鹽的重量是“1”,水的重量是“5”,于是,將兩瓶鹽水并在一起,便得到鹽的重量是(1+1=)2,水的重量是(8+5=)13。
(1+1)∶(8+5)=2∶13
答:在混合后的鹽水中鹽與水重量的比是2∶13。
評析上述解答的主要錯誤是把兩種物質(zhì)重量的最簡比,看成了就是兩種物質(zhì)具體重量的比。甲瓶鹽水鹽與水重量的比是1∶8,不等于說在這瓶鹽水中鹽的重量是1千克,水的重量是8千克,乙瓶的情況也是一樣。從已知條件可以看出,在甲瓶鹽水中,鹽有1份,水有8份,鹽和水一共有(1+8=)9(份),在乙瓶鹽水中,鹽有1份,水有5份,鹽和水一共有(1+5=)6(份)。因為兩瓶鹽水是“同樣重”,但甲瓶有9份,乙瓶只有6份,所以,可見兩瓶鹽水中每“1份”的重量有多少是不相同的。上述解答簡單地將兩瓶鹽水中每份重量不同的鹽和水的份數(shù)分別相加,然后再將兩個“和”組成一個比,便造成了解答的錯誤。
正確的解答是:1∶8=2∶16,2+16=18;
1∶5=3:15,3+15=10。(2+3)∶(16+15)=5:31
答:在混合后的鹽水中鹽與水重量的比是5∶31。
編輯推薦: