小學(xué)生三年級奧數(shù)題及答案:巧填算符
1.巧填算符
在下列算式中合適的地方,添上()[],使等式成立。
、 1+2×3+4×5+6×7+8×9=303
、1+2×3+4×5+6×7+8×9=1395
、1+2×3+4×5+6×7+8×9=4455
分析 本題要求在算式中添括號,注意到括號的作用是改變運算的順序,使括號中的部分先做,而在四則運算中規(guī)定"先乘除,后加減",要改變這一順序,往往把括號加在有加、減運算的部分。
題目中三道小題的等號左邊完全相同,而右邊的得數(shù)一個比一個大.要想使得數(shù)增大,可以讓加數(shù)增大或因數(shù)增大,這是考慮本題的基本思想。
、兕}中,由湊數(shù)的思想,通過加( ),應(yīng)湊出較接近303的數(shù),注意到1+2×3+4×5+6=33,而33×7=231.較接近303,而231+8×9=303,就可得到一個解為:
。1+2×3+4×5+6)×7+8×9=303
②題中,得數(shù)比①題大得多,要使得數(shù)增大,只要把乘法中的因數(shù)增大.如果考慮把括號加在7+8上,則有6×(7+8)×9=810,此時,前面1+2×3+4×5無論怎樣加括號也得不到1395-810=585.所以這樣加括號還不夠大,可以考慮把所有的數(shù)都乘以9,即(1+2×3+4×5+6×7+8)×9=693,仍比得數(shù)小,還要增大,考慮將括號內(nèi)的數(shù)再增大,即把括號添在(1+2)或(3+4)或(5+6)或(7+8)上,試驗一下知道,可以有如下的添加法:
[(1+2)×(3+4)×5+6×7+8]×9=1395
、垲}的得數(shù)比②題又要大得多,可以考慮把(7+8)作為一個因數(shù),而1+2×3+4×5+6×(7+8)×9=837,還遠(yuǎn)小于4455,為增大得數(shù),試著把括號加在(1+2×3+4×5+6)上,作為一個因數(shù),結(jié)果得33,而33×(7+8)×9=4455.這樣,得到本題的答案是:
。1+2×3+4×5+6)×(7+8)×9=4455
解:本題的答案是:
、伲1+2×3+4×5+6)×7+8×9=303
、赱(1+2)×(3+4)×5+6×7+8]×9=1395
③(1+2×3+4×5+6)×(7+8)×9=4455
小2.巧填算符
在下面算式適當(dāng)?shù)牡胤教砩霞犹,使算式成立?br />
8 8 8 8 8 8 8 8=1000
分析 要在八個8之間只添加號,使和為1000,可先考慮在加數(shù)中湊出一個較接近1000的數(shù),它可以是888,而888+88=976,此時,用去了五個8,剩下的三個8應(yīng)湊成1000-976=24,這只要三者相加就行了。
解:本題的答案是
888+88+8+8+8=1000
編輯推薦