解:首先研究能被9整除的數(shù)的特點:如果各個數(shù)位上的數(shù)字之和能被9整除,那么這個數(shù)也能被9整除;如果各個位數(shù)字之和不能被9整除,那么得的余數(shù)就是這個數(shù)除以9得的余數(shù)。
解題:1+2+3+4+5+6+7+8+9=45;45能被9整除
依次類推:1~1999這些數(shù)的個位上的數(shù)字之和可以被9整除
10~19,20~29……90~99這些數(shù)中十位上的數(shù)字都出現(xiàn)了10次,那么十位上的數(shù)字之和就是10+20+30+……+90=450 它有能被9整除
同樣的道理,100~900 百位上的數(shù)字之和為4500 同樣被9整除
也就是說1~999這些連續(xù)的自然數(shù)的各個位上的數(shù)字之和可以被9整除;
同樣的道理:1000~1999這些連續(xù)的自然數(shù)中百位、十位、個位 上的數(shù)字之和可以被9整除(這里千位上的"1"還沒考慮,同時這里我們少200020012002200320042005
從1000~1999千位上一共999個"1"的和是999,也能整除;
200020012002200320042005的各位數(shù)字之和是27,也剛好整除。