例5 一個七位數(shù)的各位數(shù)字互不相同,并且它能被11整除,這樣的數(shù)中,最大的是哪一個?
,要使它被11整除,要滿足
。9+7+5+b)-(8+6+a)=(21+b)-(14+a)
能被11整除,也就是7+b-a要能被11整除,但是a與b只能是0,1,2,3,4中的兩個數(shù),只有b=4,a=0,滿足條件的最大七位數(shù)是9876504.
再介紹另一種解法.
先用各位數(shù)字均不相同的最大的七位數(shù)除以11(參見下頁除式).
要滿足題目的條件,這個數(shù)是9876543減6,或者再減去11的倍數(shù)中的一個數(shù),使最后兩位數(shù)字是0,1,2,3,4中的兩個數(shù)字.
43-6=37,37-11=26,26-11=15,15-11=4,因此這個數(shù)是9876504.
思考題:如果要求滿足條件的數(shù)最小,應(yīng)如何去求,是哪一個數(shù)呢?
。ù穑1023495)
例6 某個七位數(shù)1993□□□能被2,3,4,5,6,7,8,9都整除,那么它的最后三個數(shù)字組成的三位數(shù)是多少?
與上例題一樣,有兩種解法.
解一:從整除特征考慮.
這個七位數(shù)的最后一位數(shù)字顯然是0.
另外,只要再分別考慮它能被9,8,7整除.
1+9+9+3=22,要被9整除,十位與百位的數(shù)字和是5或14,要被8整除,最后三位組成的三位數(shù)要能被8整除,因此只可能是下面三個數(shù):
1993500,1993320,1993680,
其中只有199320能被7整除,因此所求的三位數(shù)是320.
解二:直接用除式來考慮.
2,3,4,5,6,7,8,9的最小公倍數(shù)是2520,這個七位數(shù)要被2520整除.
現(xiàn)在用1993000被2520來除,具體的除式如下:
因?yàn)?2520-2200=320,所以1993000+320=1993320能被2520整除.
例7 下面這個41位數(shù)
能被7整除,中間方格代表的數(shù)字是幾?
解:因?yàn)?111111=3×7×11×13×37,所以
555555=5×111111和999999=9×111111
都能被7整除.這樣,18個5和18個9分別組成的18位數(shù),也都能被7整除.
右邊的三個加數(shù)中,前、后兩個數(shù)都能被7整除,那么只要中間的55□99能被7整除,原數(shù)就能被7整除.
把55□99拆成兩個數(shù)的和:
55A00+B99,
其中□=A+B.
因?yàn)?丨55300,7丨399,所以□=3+3=6.
注意,記住111111能被7整除是很有用的.
例8 甲、乙兩人進(jìn)行下面的游戲.
兩人先約定一個整數(shù)N.然后,由甲開始,輪流把0,1,2,3,4,5,6,7,8,9十個數(shù)字之一填入下面任一個方格中
每一方格只填一個數(shù)字,六個方格都填上數(shù)字(數(shù)字可重復(fù))后,就形成一個六位數(shù).如果這個六位數(shù)能被N整除,就算乙勝;如果這個六位數(shù)不能被N整除,就算甲勝.
如果N小于15,當(dāng)N取哪幾個數(shù)時(shí),乙能取勝?
解:N取偶數(shù),甲可以在最右邊方格里填一個奇數(shù)(六位數(shù)的個位),就使六位數(shù)不能被N整除,乙不能獲勝.N=5,甲可以在六位數(shù)的個位,填一個不是0或5的數(shù),甲就獲勝.
上面已經(jīng)列出乙不能獲勝的N的取值.
如果N=1,很明顯乙必獲勝.
如果N=3或9,那么乙在填最后一個數(shù)時(shí),總是能把六個數(shù)字之和,湊成3的整數(shù)倍或9的整數(shù)倍.因此,乙必能獲勝.
考慮N=7,11,13是本題最困難的情況.注意到1001=7×11×13,乙就有一種必勝的辦法.我們從左往右數(shù)這六個格子,把第一與第四,第二與第五,第三與第六配對,甲在一對格子的一格上填某一個數(shù)字后,乙就在這一對格子的另一格上填同樣的數(shù)字,這就保證所填成的六位數(shù)能被1001整除.根據(jù)前面講到的性質(zhì)2,這個六位數(shù),能被7,11或13整除,乙就能獲勝.
綜合起來,使乙能獲勝的N是1,3,7,9,11,13.
記住,1001=7×11×13,在數(shù)學(xué)競賽或者做智力測驗(yàn)題時(shí),常常是有用的.