生活趣味數(shù)學(xué)題:巧用連比解題
來源:人教網(wǎng) 2011-08-29 10:08:09

我們學(xué)習(xí)完了比的應(yīng)用,在解答比的應(yīng)用題時,應(yīng)先讀懂題目中的前項和后項分別代表什么,這樣才能確解題正確。我們還學(xué)習(xí)了連比,可以將兩個不同的比合二為一。如甲:乙=3:4,乙:丙=7:9,那么
甲:乙:丙
3:4
7:9
────—
21:28:36
連比對應(yīng)用題也有很大作用。這里來考考大家,看看你是否掌握了連比的應(yīng)用?
小明與小麗的書籍?dāng)?shù)量之比為1:2,小華的書籍是小明的1/3還多3本。小華、小明、小麗書籍之和為43本,他們各有多少本書?
答案:
從題目中,可以知道“小華的書籍是小明的1/3還多3本”。如果我們把總本數(shù)去掉小華多的3本,那么小華的書籍是小明的1/3,這句話也可以說成小華的書籍與小明書籍的比是1:3。所以
小華:小明:小麗
1:3
1:2
----------------
1:3:6
40本圖書正好共分成(3+1+6)份,用(43—3)÷(3+1+6)=4本,求的是1份的本數(shù)。再根據(jù)連比,小明有3份,用4×3=12(本);小華有1份還多3本,用4×1+3=7(本);小麗有6份用4×6=24(本)。
是不是看上去很復(fù)雜,但通過將分數(shù)與比轉(zhuǎn)化,然后應(yīng)用連比的知識就能很快解答了呢?有時候把題目中的“拌腳石”拿開之后,再去還原,這樣就可以快速正確地解答出題目了。
巧用抽屜原理
任意5個不相同的自然數(shù),其中最少有兩個數(shù)的差是4的倍數(shù),這是為什么?
答案:
一個自然數(shù)除以4有兩種情況:一是整除為0,二是有余數(shù)1、2、3.如果有2個自然數(shù)除以4的余數(shù)相同,那么這兩個自然數(shù)的差就是4的倍數(shù)。
把0、1、2、3這四種情況看作4個抽屜,把5個不同自然數(shù)看作5個蘋果,必定有一個抽屜里至少有2個數(shù),而這兩個數(shù)的余數(shù)是相同的,它們的差一定是4的倍數(shù)。所以任意5個不相同的自然數(shù),其中至少有兩個數(shù)的差是4的倍數(shù)。
相關(guān)文章
- 小學(xué)1-6年級作文素材大全
- 全國小學(xué)升初中語數(shù)英三科試題匯總
- 小學(xué)1-6年級數(shù)學(xué)天天練
- 小學(xué)1-6年級奧數(shù)類型例題講解整理匯總
- 小學(xué)1-6年級奧數(shù)練習(xí)題整理匯總
- 小學(xué)1-6年級奧數(shù)知識點匯總
- 小學(xué)1-6年級語數(shù)英教案匯總
- 小學(xué)語數(shù)英試題資料大全
- 小學(xué)1-6年級語數(shù)英期末試題整理匯總
- 小學(xué)1-6年級語數(shù)英期中試題整理匯總
- 小學(xué)1-6年語數(shù)英單元試題整理匯總