快車和慢車分別從A,B兩地同時開出,相向而行.經(jīng)過5小時兩車相遇.已知慢車從B到A用了12.5小時,慢車到A停留半小時后返回.快車到B停留1小時后返回.問:兩車從第一次相遇到再相遇共需多少時間?
解:畫一張示意圖:
設(shè)C點是第一次相遇處.慢車從B到C用了5小時,從C到A用了12.5-5=7.5(小時).我們把慢車半小時行程作為1個單位.B到C10個單位,C到A15個單位.慢車每小時走2個單位,快車每小時走3個單位.
有了上面"取單位"準(zhǔn)備后,下面很易計算了.
慢車從C到A,再加停留半小時,共8小時.此時快車在何處呢?去掉它在B停留1小時.快車行駛7小時,共行駛3×7=21(單位).從B到C再往前一個單位到D點.離A點15-1=14(單位).
現(xiàn)在慢車從A,快車從D,同時出發(fā)共同行走14單位,相遇所需時間是
14÷(2+3)=2.8(小時).
慢車從C到A返回行駛至與快車相遇共用了
7.5+0.5+2.8=10.8(小時).
答:從第一相遇到再相遇共需10小時48分.