中国大陆国产高清aⅴ毛片_久热re_日韩精品亚洲Aⅴ在线影院_一本色道久久综合亚洲精品不卡_久久久久亚洲AV无码永不

奧數(shù)網(wǎng)
全國站

奧數(shù) > 小學資源庫 > 奧數(shù)練習題 > 二年級奧數(shù) > 速算與巧算 > 正文

二年級下冊第四講 數(shù)與形相映

2011-07-20 15:47:13      下載試卷

  形和數(shù)的密切關系,在古代就被人們注意到了.古希臘人發(fā)現(xiàn)的形數(shù)就是非常有趣的例子.

  例1 最初的數(shù)和最簡的圖相對應.

  

  這是古希臘人的觀點,他們說一切幾何圖形都是由數(shù)產(chǎn)生的.

  例2 我國在春秋戰(zhàn)國時代就有了“洛圖”(見下圖).圖中也是用“圓點”表示數(shù),而且還區(qū)分了偶數(shù)和奇數(shù),偶數(shù)用實心點表示,奇數(shù)用空心點表示.你能把這張圖用自然數(shù)寫出來嗎?見下圖所示,這個圖又叫九宮圖.

  例3 古希臘數(shù)學家畢達哥拉斯發(fā)現(xiàn)了“形數(shù)”的奧秘.比如他把1,3,6,10,15,…叫做三角形數(shù).因為用圓點按這些數(shù)可以堆壘成三角形,見下圖.

  畢達哥拉斯還從圓點的堆壘規(guī)律,發(fā)現(xiàn)每一個三角形數(shù),都可以寫成從1開始的n個自然數(shù)之和,最大的自然數(shù)就是三角形底邊圓點的個數(shù).

  第一個數(shù):1=1

  第二個數(shù):3=1+2

  第三個數(shù):6=1+2+3

  第四個數(shù):10=1+2+3+4

  第五個數(shù):15=1+2+3+4+5

  …

  第n個數(shù):1+2+3+4+5+…+n

 

指定的三角形數(shù).比如第100個三角形數(shù)是:

  例4 畢達哥拉斯還發(fā)現(xiàn)了四角形數(shù),見下圖.因為用圓點按四角形數(shù)可以堆壘成正方形,因此它們最受

畢達哥拉斯及其弟子推崇.

  第一個數(shù):1=12=1

  第二個數(shù):4=22=1+3

  第三個數(shù):9=32=1+3+5

  第四個數(shù):16=42=1+3+5+7

  第五個數(shù):25=52=1+3+5+7+9

  …

  第n個數(shù):n2=1+3+5+9+…+(2n-1).

  四角形數(shù)(又叫正方形數(shù))可以表示成自然數(shù)的平方,也可以表示成從1開始的幾個連續(xù)奇數(shù)之和.奇數(shù)的個數(shù)就等于正方形的一條邊上的點數(shù).

  例5 類似地,還有四面體數(shù)見下圖.

  仔細觀察可發(fā)現(xiàn),四面體的每一層的圓點個數(shù)都是三角形數(shù).因此四面體數(shù)可由幾個三角形數(shù)相加得到:

  第一個數(shù):1

  第二個數(shù):4=1+3

  第三個數(shù):10=1+3+6

  第四個數(shù):20=1+3+6+10

  第五個數(shù):35=1+3+6+10+15.

  例6 五面體數(shù),見下圖.

  仔細觀察可以發(fā)現(xiàn),五面體的每一層的圓點個數(shù)都是四角形數(shù),因此五面體數(shù)可由幾個四角形數(shù)相加得到:

  第一個數(shù):1=1

  第二個數(shù):5=1+4

  第三個數(shù):14=1+4+9

  第四個數(shù):30=1+4+9+16

  第五個數(shù):55=1+4+9+16+25.

  例7 按不同的方法對圖中的點進行數(shù)數(shù)與計數(shù),可以得出一系列等式,進而可猜想到一個重要的公式.

由此可以使人體會到數(shù)與形之間的耐人導味的微妙關系.

  方法1:先算空心點,再算實心點:

  22+2×2+1.

  方法2:把點圖看作一個整體來算32.

  因為點數(shù)不會因計數(shù)方法不同而變,所以得出:

  22+2×2+1=32.

  方法1:先算空心點,再算實心點:

  32+2×3+1.

  方法2:把點圖看成一個整體來算:42.

  因為點數(shù)不會因計數(shù)方法不同而變,所以得出:

  32+2×3+1=42.

  方法1:先算空心點,再算實心點:

  42+2×4+1.

  方法2:把點圖看成一個整體來算52.

  因為點數(shù)不會因計數(shù)方法不同而變,所以得出:

  42+2×4+1=52.

  把上面的幾個等式連起來看,進一步聯(lián)想下去,可以猜到一個一般的公式:

  22+2×2+1=32

  32+2×3+1=42

  42+2×4+1=52

  …

  n2+2×n+1=(n+1)2.

  利用這個公式,也可用于速算與巧算.

  如:92+2×9+1=(9+1)2=102=100

  992+2×99+1=(99+1)2

  =1002=10000.

來源:奧數(shù)網(wǎng)整理

      歡迎訪問奧數(shù)網(wǎng),您還可以在這里獲取百萬真題,2023小升初我們一路相伴。>>[點擊查看]

分類

專題

類型

搜索

  • 歡迎掃描二維碼
    關注奧數(shù)網(wǎng)微信
    ID:aoshu_2003

  • 歡迎掃描二維碼
    關注中考網(wǎng)微信
    ID:zhongkao_com

本周新聞動態(tài)

重點中學快訊

奧數(shù)關鍵詞

廣告合作請加微信:17310823356

廣告服務 - 營銷合作 - 友情鏈接 - 網(wǎng)站地圖 - 服務條款 - 誠聘英才 - 問題反饋 - 手機版

京ICP備09042963號-15 京公網(wǎng)安備 11010802027854號

違法和不良信息舉報電話: 010-56762110 舉報郵箱:wzjubao@tal.com

奧數(shù)版權(quán)所有Copyright@2005-2021 www.lczxdz.com. All Rights Reserved.