添板插板法
例3:把10個相同小球放入3個不同的箱子,問有幾種情況?
-o - o - o - o - o - o - o - o - o - o - o表示10個小球,-表示空位
11個空位中取2個加入2塊板,第一組和第三組可以取到空的情況,第2組始終不能取空
此時 若在 第11個空位后加入第12塊板,設(shè)取到該板時,第二組取球為空
則每一組都可能取球為空 c12 2=66
例4:有一類自然數(shù),從第三個數(shù)字開始,每個數(shù)字都恰好是它前面兩個數(shù)字之和,直至不能再寫為止,如257,1459等等,這類數(shù)共有幾個?
因為前2位數(shù)字唯一對應(yīng)了符合要求的一個數(shù),只要求出前2位有幾種情況即可,設(shè)前兩位為ab
顯然a+b<=9 ,且a不為0
1 -1- 1 -1 -1 -1 -1 -1 -1 - - 1代表9個1,-代表10個空位
我們可以在這9個空位中插入2個板,分成3組,第一組取到a個1,第二組取到b個1,但此時第二組始終不能取空,若多添加第10個空時,設(shè)取到該板時第二組取空,即b=0,所以一共有 c10 2=45
例5:有一類自然數(shù),從第四個數(shù)字開始,每個數(shù)字都恰好是它前面三個數(shù)字之和,直至不能再寫為止,如2349,1427等等,這類數(shù)共有幾個?
類似的,某數(shù)的前三位為abc,a+b+c<=9,a不為0
1 -1- 1 -1 -1 -1 -1 -1 -1 - - -
在9個空位種插如3板,分成4組,第一組取a個1,第二組取b個1,第三組取c個1,由于第二,第三組都不能取到空,所以添加2塊板
設(shè)取到第10個板時,第二組取空,即b=0;取到第11個板時,第三組取空,即c=0。所以一共有c11 3=165