扇形有一條對稱軸。
(2)計算公式
s=n∏r2/360
8.環(huán)形
(1)特征
由兩個半徑不相等的同心圓相減而成,有無數(shù)條對稱軸。
(2)計算公式
s=∏(R2-r2)
9.軸對稱圖形
(1)特征
如果一個圖形沿著一條直線對折,兩側(cè)的圖形能夠完全重合,這個圖形就是軸對稱圖形。折痕所在的這條直線叫做對稱軸。
正方形有4條對稱軸,長方形有2條對稱軸。
等腰三角形有2條對稱軸,等邊三角形有3條對稱軸。
等腰梯形有一條對稱軸,圓有無數(shù)條對稱軸。
菱形有4條對稱軸,扇形有一條對稱軸。
三、立體圖形
。ㄒ唬╅L方體
1.特征
六個面都是長方形(有時有兩個相對的面是正方形)。
相對的面面積相等,12條棱相對的4條棱長度相等。
有8個頂點。
相交于一個頂點的三條棱的長度分別叫做長、寬、高。
兩個面相交的邊叫做棱。
三條棱相交的點叫做頂點。
把長方體放在桌面上,最多只能看到三個面。
長方體或者正方體6個面的總面積,叫做它的表面積。
2.計算公式
s=2(ab+ah+bh)
V=sh
V=abh
。ǘ┱襟w
1.特征
六個面都是正方形
六個面的面積相等
12條棱,棱長都相等
有8個頂點
正方體可以看作特殊的長方體
2.計算公式
S表=6a2
v=a3
(三)圓柱
1.圓柱的認識
圓柱的上下兩個面叫做底面。
圓柱有一個曲面叫做側(cè)面。
圓柱兩個底面之間的距離叫做高。
進一法:實際中,使用的材料都要比計算的結(jié)果多一些,因此,要保留數(shù)的時候,省略的位上的是4或者比4小,都要向前一位進1。這種取近似值的方法叫做進一法。
2.計算公式
s側(cè)=ch
s表=s側(cè)+s底×2
v=sh/3
。ㄋ模﹫A錐
1.圓錐的認識
圓錐的底面是個圓,圓錐的側(cè)面是個曲面。
從圓錐的頂點到底面圓心的距離是圓錐的高。
測量圓錐的高:先把圓錐的底面放平,用一塊平板水平地放在圓錐的頂點上面,豎直地量出平板和底面之間的距離。
把圓錐的側(cè)面展開得到一個扇形。
2.計算公式
v=sh/3
。ㄎ澹┣
1.認識
球的表面是一個曲面,這個曲面叫做球面。
球和圓類似,也有一個球心,用O表示。
從球心到球面上任意一點的線段叫做球的半徑,用r表示,每條半徑都相等。
通過球心并且兩端都在球面上的線段,叫做球的直徑,用d表示,每條直徑都相等,直徑的長度等于半徑的2倍,即d=2r。
2.計算公式
d=2r