一、學(xué)習(xí)指引
1.知識(shí)要點(diǎn):
三角形及四邊形的基本性質(zhì),特殊三角形、特殊四邊形、全等三角形的判定和性質(zhì),軸對(duì)稱(chēng)、平移、旋轉(zhuǎn)、相似等變換的性質(zhì),一次函數(shù)圖象和性質(zhì)。
2.方法指導(dǎo):
。1)解決動(dòng)態(tài)幾何型問(wèn)題的策略:化"動(dòng)"為"靜"--利用運(yùn)動(dòng)中特殊點(diǎn)的位置將圖形分類(lèi);"靜"中求"動(dòng)"--針對(duì)各類(lèi)圖形,分別解決動(dòng)態(tài)問(wèn)題。
(2)解決圖形分割問(wèn)題的思維方式是:從具體問(wèn)題出發(fā)→觀察猜想→實(shí)驗(yàn)操作→形成方案→嚴(yán)密計(jì)算與論證;圖形分割問(wèn)題的解題策略:比較原圖形與分割后圖形在邊、角、面積等方面的變化是解決圖形分割問(wèn)題的著手點(diǎn);
。3)新概念性幾何題解題策略:正確理解問(wèn)題中的"新概念",然后抓住 "新概念"的特征,結(jié)合相關(guān)的數(shù)學(xué)知識(shí)綜合解決問(wèn)題。