奧數(shù) > 小學(xué)資源庫 > 教案 > 小學(xué)數(shù)學(xué)教案 > 四年級數(shù)學(xué)下冊教案 > 正文
2009-11-19 17:05:16
我們在三年級已經(jīng)學(xué)習(xí)了能被2,3,5整除的數(shù)的特征,這一講我們將討論整除的性質(zhì),并講解能被4,8,9整除的數(shù)的特征。
數(shù)的整除具有如下性質(zhì):
性質(zhì)1 如果甲數(shù)能被乙數(shù)整除,乙數(shù)能被丙數(shù)整除,那么甲數(shù)一定能被丙數(shù)整除。例如,48能被16整除,16能被8整除,那么48一定能被8整除。
性質(zhì)2 如果兩個數(shù)都能被一個自然數(shù)整除,那么這兩個數(shù)的和與差也一定能被這個自然數(shù)整除。例如,21與15都能被3整除,那么21+15及21-15都能被3整除。
性質(zhì)3 如果一個數(shù)能分別被兩個互質(zhì)的自然數(shù)整除,那么這個數(shù)一定能被這兩個互質(zhì)的自然數(shù)的乘積整除。例如,126能被9整除,又能被7整除,且9與7互質(zhì),那么126能被9×7=63整除。
利用上面關(guān)于整除的性質(zhì),我們可以解決許多與整除有關(guān)的問題。為了進(jìn)一步學(xué)習(xí)數(shù)的整除性,我們把學(xué)過的和將要學(xué)習(xí)的一些整除的數(shù)字特征列出來:
。1)一個數(shù)的個位數(shù)字如果是0,2,4,6,8中的一個,那么這個數(shù)就能被2整除。
(2)一個數(shù)的個位數(shù)字如果是0或5,那么這個數(shù)就能被5整除。
(3)一個數(shù)各個數(shù)位上的數(shù)字之和如果能被3整除,那么這個數(shù)就能被3整除。
。4)一個數(shù)的末兩位數(shù)如果能被4(或25)整除,那么這個數(shù)就能被4(或25)整除。
。5)一個數(shù)的末三位數(shù)如果能被8(或125)整除,那么這個數(shù)就能被8(或125)整除。
(6)一個數(shù)各個數(shù)位上的數(shù)字之和如果能被9整除,那么這個數(shù)就能被9整除。
其中(1)(2)(3)是三年級學(xué)過的內(nèi)容,(4)(5)(6)是本講要學(xué)習(xí)的內(nèi)容。
因為100能被4(或25)整除,所以由整除的性質(zhì)1知,整百的數(shù)都能被 4(或25)整除。因為任何自然數(shù)都能分成一個整百的數(shù)與這個數(shù)的后兩位數(shù)之和,所以由整除的性質(zhì)2知,只要這個數(shù)的后兩位數(shù)能被4(或25)整除,這個數(shù)就能被4(或25)整除。這就證明了(4)。
類似地可以證明(5)。
。6)的正確性,我們用一個具體的數(shù)來說明一般性的證明方法。
837=800+30+7
。8×100+3×10+7
。8×(99+1)+3×(9+1)+7
=8×99+8+3×9+3+7
=(8×99+3×9)+(8+3+7)。
因為99和9都能被9整除,所以根據(jù)整除的性質(zhì)1和性質(zhì)2知,(8x99+3x9)能被9整除。再根據(jù)整除的性質(zhì)2,由(8+3+7)能被9整除,就能判斷837能被9整除。
利用(4)(5)(6)還可以求出一個數(shù)除以4,8,9的余數(shù):
(4‘)一個數(shù)除以4的余數(shù),與它的末兩位除以4的余數(shù)相同。
。5‘)一個數(shù)除以8的余數(shù),與它的末三位除以8的余數(shù)相同。
(6’)一個數(shù)除以9的余數(shù),與它的各位數(shù)字之和除以9的余數(shù)相同。
例1 在下面的數(shù)中,哪些能被4整除?哪些能被8整除?哪些能被9整除?
234,789,7756,8865,3728,8064。
解:能被4整除的數(shù)有7756,3728,8064;
能被8整除的數(shù)有3728,8064;
能被9整除的數(shù)有234,8865,8064。
例2 在四位數(shù)56□2中,被蓋住的十位數(shù)分別等于幾時,這個四位數(shù)分別能被9,8,4整除?
解:如果56□2能被9整除,那么
5+6+□+2=13+□
應(yīng)能被9整除,所以當(dāng)十位數(shù)是5,即四位數(shù)是5652時能被9整除;
如果56□2能被8整除,那么6□2應(yīng)能被8整除,所以當(dāng)十位數(shù)是3或7,即四位數(shù)是5632或5672時能被8整除;
如果56□2能被4整除,那么□2應(yīng)能被4整除,所以當(dāng)十位數(shù)是1,3,5,7,9,即四位數(shù)是5612,5632,5652,5672,5692時能被4整除。
到現(xiàn)在為止,我們已經(jīng)學(xué)過能被2,3,5,4,8,9整除的數(shù)的特征。根據(jù)整除的性質(zhì)3,我們可以把判斷整除的范圍進(jìn)一步擴大。例如,判斷一個數(shù)能否被6整除,因為6=2×3,2與3互質(zhì),所以如果這個數(shù)既能被2整除又能被3整除,那么根據(jù)整除的性質(zhì)3,可判定這個數(shù)能被6整除。同理,判斷一個數(shù)能否被12整除,只需判斷這個數(shù)能否同時被3和4整除;判斷一個數(shù)能否被72整除,只需判斷這個數(shù)能否同時被8和9整除;如此等等。
例3 從0,2,5,7四個數(shù)字中任選三個,組成能同時被2,5,3整除的數(shù),并將這些數(shù)從小到大進(jìn)行排列。
解:因為組成的三位數(shù)能同時被2,5整除,所以個位數(shù)字為0。根據(jù)三位數(shù)能被3整除的特征,數(shù)字和2+7+0與5+7+0都能被3整除,因此所求的這些數(shù)為270,570,720,750。
歡迎掃描二維碼
關(guān)注奧數(shù)網(wǎng)微信
ID:aoshu_2003
歡迎掃描二維碼
關(guān)注中考網(wǎng)微信
ID:zhongkao_com