第四講 數(shù)論的方法技巧之二
4.1 反證法
反證法即首先對(duì)命題的結(jié)論作出相反的假設(shè),并從此假設(shè)出發(fā),經(jīng)過(guò)正確的推理,導(dǎo)出矛盾的結(jié)果,這就否定了作為推理出發(fā)點(diǎn)的假設(shè),從而肯定了原結(jié)論是正確的。
反證法的過(guò)程可簡(jiǎn)述為以下三個(gè)步驟:
1.反設(shè):假設(shè)所要證明的結(jié)論不成立,而其反面成立;
2.歸謬:由“反設(shè)”出發(fā),通過(guò)正確的推理,導(dǎo)出矛盾——與已知條件、公理、定義、定理、反設(shè)及明顯的事實(shí)矛盾或自相矛盾;
3.結(jié)論:因?yàn)橥评碚_,產(chǎn)生矛盾的原因在于“反設(shè)”的謬誤,既然結(jié)論的反面不成立,從而肯定了結(jié)論成立。
運(yùn)用反證法的關(guān)鍵在于導(dǎo)致矛盾。在數(shù)論中,不少問(wèn)題是通過(guò)奇偶分析或同余等方法引出矛盾的。
解:如果存在這樣的三位數(shù),那么就有
100a+10b+c=(10a+b)+(10b+c)+(10a+c)。上式可化簡(jiǎn)為 80a=b+c,而這顯然是不可能的,因?yàn)?/span>a≥1,b≤9,c≤9。這表明所找的數(shù)是不存在的。
說(shuō)明:在證明不存在性的問(wèn)題時(shí),常用反證法:先假設(shè)存在,即至少有一個(gè)元素,它符合命題中所述的一切要求,然后從這個(gè)存在的元素出發(fā),進(jìn)行推理,直到產(chǎn)生矛盾。
例2 將某個(gè)17位數(shù)的數(shù)字的排列順序顛倒,再將得到的數(shù)與原來(lái)的數(shù)相加。試說(shuō)明,得到的和中至少有一個(gè)數(shù)字是偶數(shù)。
解:假設(shè)得到的和中沒(méi)有一個(gè)數(shù)字是偶數(shù),即全是奇數(shù)。在如下式所示的加法算式中,末一列數(shù)字的和d+a為奇數(shù),從而第一列也是如此,因此第二列數(shù)字的和b+c≤9。將已知數(shù)的前兩位數(shù)字a,b與末兩位數(shù)字c,d去掉,所得的13位數(shù)仍具有“將它的數(shù)字顛倒,得到的數(shù)與它相加,和的數(shù)字都是奇數(shù)”這一性質(zhì)。照此進(jìn)行,每次去掉首末各兩位數(shù)字,最后得到一位數(shù),它與自身相加是偶數(shù),矛盾。故和的數(shù)字中必有偶數(shù)。
說(shuō)明:顯然結(jié)論對(duì)(4k+1)位數(shù)也成立。但對(duì)其他位數(shù)的數(shù)不一定成立。如12+21,506+605等。
例3 有一個(gè)魔術(shù)錢(qián)幣機(jī),當(dāng)塞入1枚1分硬幣時(shí),退出1枚1角和1枚5分的硬幣;當(dāng)塞入1枚5分硬幣時(shí),退出4枚1角硬幣;當(dāng)塞入1枚1角硬幣時(shí),退出3枚1分硬幣。小紅由1枚1分硬幣和1枚5分硬幣開(kāi)始,反復(fù)將硬幣塞入機(jī)器,能否在某一時(shí)刻,小紅手中1分的硬幣剛好比1角的硬幣少10枚?
解:開(kāi)始只有1枚1分硬幣,沒(méi)有1角的,所以開(kāi)始時(shí)1角的和1分的總枚數(shù)為 0+1=1,這是奇數(shù)。每使用一次該機(jī)器,1分與1角的總枚數(shù)記為Q。下面考查Q的奇偶性。
如果塞入1枚1分的硬幣,那么Q暫時(shí)減少1,但我們?nèi)』亓?/span>1枚1角的硬幣(和1枚5分的硬幣),所以總數(shù)Q沒(méi)有變化;如果再塞入1枚5分的硬幣(得到4枚1角硬幣),那么Q增加4,而其奇偶性不變;如果塞入1枚1角硬幣,那么Q增加2,其奇偶性也不變。所以每使用一次機(jī)器,Q的奇偶性不變,因?yàn)殚_(kāi)始時(shí)Q為奇數(shù),它將一直保持為奇數(shù)。
這樣,我們就不可能得到1分硬幣的枚數(shù)剛好比1角硬幣數(shù)少 10的情況,因?yàn)槿绻覀冇?/span>P枚1分硬幣和(P+10)枚1角硬幣,那么1分和1角硬幣的總枚數(shù)為(2P+10),這是一個(gè)偶數(shù)。矛盾。
例 4在3×3的方格表中已如右圖填入了9個(gè)質(zhì)數(shù)。將表中同一行或同一列的3個(gè)數(shù)加上相同的自然數(shù)稱(chēng)為一次操作。問(wèn):你能通過(guò)若干次操作使得表中9個(gè)數(shù)都變?yōu)橄嗤臄?shù)嗎?為什么?
解:因?yàn)楸碇?/span>9個(gè)質(zhì)數(shù)之和恰為100,被3除余1,經(jīng)過(guò)每一次操作,總和增加3的倍數(shù),所以表中9個(gè)數(shù)之和除以3總是余1。如果表中9個(gè)數(shù)變?yōu)橄嗟,那?/span>9個(gè)數(shù)的總和應(yīng)能被3整除,這就得出矛盾!
所以,無(wú)論經(jīng)過(guò)多少次操作,表中的數(shù)都不會(huì)變?yōu)?/span>9個(gè)相同的數(shù)。