復(fù)數(shù)的萌芽、形成與發(fā)展
來源:人教網(wǎng) 文章作者:張洪杰 2009-08-12 09:24:18
我們知道,在實(shí)數(shù)范圍內(nèi),解方程是無能為力的,只有把實(shí)數(shù)集擴(kuò)充到復(fù)數(shù)集才能解決。對于復(fù)數(shù)a+bi(a、b都是實(shí)數(shù))來說,當(dāng)b=0時(shí),就是實(shí)數(shù);當(dāng)b≠0時(shí)叫虛數(shù),當(dāng)a=0,b≠0時(shí),叫做純虛數(shù)?墒牵瑲v史上引進(jìn)虛數(shù),把實(shí)數(shù)集擴(kuò)充到復(fù)數(shù)集可不是件容易的事,那么,歷史上是如何引進(jìn)虛數(shù)的呢?
16世紀(jì)意大利米蘭學(xué)者卡當(dāng)(1501—1576)在1545年發(fā)表的《重要的藝術(shù)》一書中,公布了三次方程的一般解法,被后人稱之為“卡當(dāng)公式”。他是第一個(gè)把負(fù)數(shù)的平方根寫到公式中的數(shù)學(xué)家,并且在討論是否可能把10分成兩部分,使它們的乘積等于40時(shí),他把答案寫成=40,盡管他認(rèn)為和這兩個(gè)表示式是沒有意義的、想象的、虛無飄渺的,但他還是把10分成了兩部分,并使它們的乘積等于40。給出“虛數(shù)”這一名稱的是法國數(shù)學(xué)家笛卡爾(1596—1650),他在《幾何學(xué)》(1637年發(fā)表)中使“虛的數(shù)’‘與“實(shí)的數(shù)”相對應(yīng),從此,虛數(shù)才流傳開來。
數(shù)系中發(fā)現(xiàn)一顆新星──虛數(shù),于是引起了數(shù)學(xué)界的一片困惑,很多大數(shù)學(xué)家都不承認(rèn)虛數(shù)。德國數(shù)學(xué)家菜不尼茨(1664—1716)在1702年說:“虛數(shù)是神靈遁跡的精微而奇異的隱避所,它大概是存在和虛妄兩界中的兩棲物”。瑞士數(shù)學(xué)大師歐拉(1707—1783)說;“一切形如,習(xí)的數(shù)學(xué)武子都是不可能有的,想象的數(shù),因?yàn)樗鼈兯硎镜氖秦?fù)數(shù)的平方根。對于這類數(shù),我們只能斷言,它們既不是什么都不是,也不比什么都不是多些什么,更不比什么都不是少些什么,它們純屬虛幻。”然而,真理性的東西一定可以經(jīng)得住時(shí)間和空間的考驗(yàn),最終占有自己的一席之地。法國數(shù)學(xué)家達(dá)蘭貝爾(1717—1783)在1747年指出,如果按照多項(xiàng)式的四則運(yùn)算規(guī)則對虛數(shù)進(jìn)行運(yùn)算,那么它的結(jié)果總是的形式(a、b都是實(shí)數(shù))(說明:現(xiàn)行教科書中沒有使用記號(hào)=-i,而使用=一1)。法國數(shù)學(xué)家棣莫佛(1667—1754)在1730年發(fā)現(xiàn)公式了,這就是著名的探莫佛定理。歐拉在1748年發(fā)現(xiàn)了有名的關(guān)系式,并且是他在《微分公式》(1777年)一文中第一次用i來表示一1的平方根,首創(chuàng)了用符號(hào)i作為虛數(shù)的單位。“虛數(shù)”實(shí)際上不是想象出來的,而它是確實(shí)存在的。挪威的測量學(xué)家成塞爾(1745—1818)在1779年試圖給于這種虛數(shù)以直觀的幾何解釋,并首先發(fā)表其作法,然而沒有得到學(xué)術(shù)界的重視。
德國數(shù)學(xué)家高斯(1777—1855)在1806年公布了虛數(shù)的圖象表示法,即所有實(shí)數(shù)能用一條數(shù)軸表示,同樣,虛數(shù)也能用一個(gè)平面上的點(diǎn)來表示。在直角坐標(biāo)系中,橫軸上取對應(yīng)實(shí)數(shù)a的點(diǎn)a,縱軸上取對應(yīng)實(shí)數(shù)b的點(diǎn)b,并過這兩點(diǎn)引平行于坐標(biāo)軸的直線,它們的交點(diǎn)c就表示復(fù)數(shù)a+bi。象這樣,由各點(diǎn)都對應(yīng)復(fù)數(shù)的平面叫做“復(fù)平面”,后來又稱“高斯平面”。高斯在1831年,用實(shí)數(shù)組(a,b)代表復(fù)數(shù)a+bi,并建立了復(fù)數(shù)的某些運(yùn)算,使得復(fù)數(shù)的某些運(yùn)算也象實(shí)數(shù)一樣地“代數(shù)化”。他又在1832年第一次提出了“復(fù)數(shù)”這個(gè)名詞,還將表示平面上同一點(diǎn)的兩種不同方法──直角坐標(biāo)法和極坐標(biāo)法加以綜合。統(tǒng)一于表示同一復(fù)數(shù)的代數(shù)式和三角式兩種形式中,并把數(shù)軸上的點(diǎn)與實(shí)數(shù)—一對應(yīng),擴(kuò)展為平面上的點(diǎn)與復(fù)數(shù)—一對應(yīng)。高斯不僅把復(fù)數(shù)看作平面上的點(diǎn),而且還看作是一種向量,并利用復(fù)數(shù)與向量之間—一對應(yīng)的關(guān)系,闡述了復(fù)數(shù)的幾何加法與乘法。至此,復(fù)數(shù)理論才比較完整和系統(tǒng)地建立起來了。
經(jīng)過許多數(shù)學(xué)家長期不懈的努力,深刻探討并發(fā)展了復(fù)數(shù)理論,才使得在數(shù)學(xué)領(lǐng)域游蕩了200年的幽靈──虛數(shù)揭去了神秘的面紗,顯現(xiàn)出它的本來面目,原來虛數(shù)不虛呵。虛數(shù)成為了數(shù)系大家庭中一員,從而實(shí)數(shù)集才擴(kuò)充到了復(fù)數(shù)集。
隨著科學(xué)和技術(shù)的進(jìn)步,復(fù)數(shù)理論已越來越顯出它的重要性,它不但對于數(shù)學(xué)本身的發(fā)展有著極其重要的意義,而且為證明機(jī)翼上升力的基本定理起到了重要作用,并在解決堤壩滲水的問題中顯示了它的威力,也為建立巨大水電站提供了重要的理論依據(jù)。
相關(guān)文章
- 小學(xué)1-6年級(jí)作文素材大全
- 全國小學(xué)升初中語數(shù)英三科試題匯總
- 小學(xué)1-6年級(jí)數(shù)學(xué)天天練
- 小學(xué)1-6年級(jí)奧數(shù)類型例題講解整理匯總
- 小學(xué)1-6年級(jí)奧數(shù)練習(xí)題整理匯總
- 小學(xué)1-6年級(jí)奧數(shù)知識(shí)點(diǎn)匯總
- 小學(xué)1-6年級(jí)語數(shù)英教案匯總
- 小學(xué)語數(shù)英試題資料大全
- 小學(xué)1-6年級(jí)語數(shù)英期末試題整理匯總
- 小學(xué)1-6年級(jí)語數(shù)英期中試題整理匯總
- 小學(xué)1-6年語數(shù)英單元試題整理匯總