奧數(shù) > 小學資源庫 > 教案 > 小學數(shù)學教案 > 四年級數(shù)學下冊教案 > 正文
2009-07-22 23:56:04
本單元安排在學生已經(jīng)掌握了許多自然數(shù)的知識之后,系統(tǒng)地教學分數(shù)的意義和性質之前,可以使學生進一步豐富自然數(shù)的知識,了解自然數(shù)之間存在的倍數(shù)與因數(shù)關系,體會自然數(shù)都有因數(shù),而且不同自然數(shù)的因數(shù)個數(shù)是不同的。這些內(nèi)容還能為以后教學分數(shù)知識作必要的準備。研究倍數(shù)與因數(shù)一般在非零自然數(shù)范圍內(nèi)進行,可以減少不必要的麻煩。因此,教材在底注中給予明確的規(guī)定。教學內(nèi)容分四部分編排。
第70~73頁教學相關的自然數(shù)之間的倍數(shù)與因數(shù)關系,求一個數(shù)的倍數(shù)或因數(shù)的方法。
第74~77頁教學5、2、3的倍數(shù)的特點,以及偶數(shù)、奇數(shù)等知識。
第78~79頁教學素數(shù)與合數(shù)的概念和判斷方法。
第80~82頁整理全單元的知識并組織綜合練習。
編寫的“你知道嗎”介紹哥德巴赫猜想和我國數(shù)學家研究這一猜想取得的顯著成就。兩道思考題讓學生利用所學的數(shù)學概念探索有挑戰(zhàn)性的問題。
1? 聯(lián)系實際體會自然數(shù)之間的倍數(shù)、因數(shù)關系,探索找一個數(shù)的倍數(shù)與因數(shù)的方法。
教材的第一部分先教學倍數(shù)、因數(shù)關系,再教學求倍數(shù)與因數(shù)的方法。前者是形成數(shù)學概念,后者是應用概念。
。1) 第70頁的例題從12個相同的正方形拼長方形開始教學,學生對這個活動已經(jīng)很熟悉,幾乎人人都知道有不同的拼法,都能順利地拼出三種不同的長方形。教材根據(jù)各種拼法中每行正方形的個數(shù)與行數(shù),把三種拼法分別表示成4×3=12、6×2=12和12×1=12。以4×3=12為例講了12是4的倍數(shù),也是3的倍數(shù),4和3都是12的因數(shù)。又讓學生說出6×2=12、12×1=12里存在的倍數(shù)、因數(shù)關系。這道例題有兩個編寫特點: 第一個特點是作為研究對象的三個數(shù)學式子都從具體的操作活動中提取出來,有助于學生聯(lián)系現(xiàn)實情境和實際經(jīng)驗體會倍數(shù)與因數(shù)的含義;第二個特點是給學生舉一反三的機會,用4×3=12里學到的倍數(shù)、因數(shù)知識解釋6×2=12、12×1=12這兩個式子里的倍數(shù)與因數(shù)關系,充分地調(diào)動了學生的積極性和主動性。教學這道例題要注意,倍數(shù)與因數(shù)是一種關系,客觀存在于兩個具體的自然數(shù)之間。因此,要通過完整的語言表達關系,讓學生體會這種關系,如4是12的因數(shù)、12是4的倍數(shù),不能說成4是因數(shù)、12是倍數(shù)。
(2) 第71頁的兩道例題分別是教學找一個數(shù)的倍數(shù)和找一個數(shù)的因數(shù)的方法,雖然內(nèi)容不同,教學方法都非常相似。即利用初步建立的倍數(shù)與因數(shù)的概念,聯(lián)系已經(jīng)掌握的乘除法口算,讓學生在探索中找到方法。
找3的倍數(shù),采用的思路是“3和任何非零自然數(shù)的乘積都是3的倍數(shù)”。這一思路容易理解、容易操作,與建立倍數(shù)、因數(shù)概念的大背景保持一致。教學時要引導學生從“3的倍數(shù)是怎樣的數(shù)”想起,先形成找3的倍數(shù)的思路,然后從小到大一個一個地找,并按順序寫出來。還要理解例題在寫出3的倍數(shù)時為什么用了省略號。“試一試”獨立找2和5的倍數(shù),一方面鞏固找一個數(shù)的倍數(shù)的方法,另一方面通過3、2、5的倍數(shù)可以發(fā)現(xiàn)有關倍數(shù)的一些規(guī)律。如一個數(shù)的倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù)等。在若干個實例中尋找共同特點,總結成規(guī)律,雖然仍舊是不完全歸納,但對小學生來說已經(jīng)是比較科學的方法了。
在找36的因數(shù)時,如果沿“乘積是36的自然數(shù)都是36的因數(shù)”這個思路就能得出“想乘法算式”這種方法,這條思路容易形成,在操作時往往不大順暢。如果按“36除以哪些自然數(shù)沒有余數(shù)?”這個思路想就能得出“想除法算式”這種方法,這條思路一旦形成,方法易于操作。因此,例題從因數(shù)的概念出發(fā),利用()×()=36這個式子先讓學生明白,找36的因數(shù)就是寫出這個式子的因數(shù)。然后聯(lián)系除法的意義,引導學生利用除法求36的因數(shù)。
在找36的因數(shù)時,無論想乘法算式還是想除法算式,學生一般都從無序到有序,從有重復或遺漏到不重復不遺漏。教學要承認學生實際,允許他們經(jīng)歷這樣的過程。先按自己的思路、用自己的方法寫36的因數(shù),能寫幾個就寫幾個,是什么順序就什么順序。然后在交流中相互評價,刪去重復的,補上遺漏的,并組織學生認真討論“怎樣找才能不重復不遺漏”,體會過程、總結方法、提升水平,學會有序地思考和尋找。
還有一點需要指出,《標準》要求學生能夠寫出10以內(nèi)自然數(shù)的倍數(shù)、100以內(nèi)自然數(shù)的因數(shù)。教材在編寫時認真落實了這些規(guī)定,在“想想做做”里沒有編排找較大自然數(shù)的倍數(shù)的練習題。適量出現(xiàn)一些稍大的數(shù)(如30),寫出它的全部因數(shù)。
2? 在找百以內(nèi)5的倍數(shù)、2的倍數(shù)、3的倍數(shù)的活動中,認識這些數(shù)的特點。
教材第二部分教學5、2、3的倍數(shù)的特點。判斷一個數(shù)是不是5的倍數(shù),是不是2的倍數(shù)都是看這個數(shù)的個位上是幾,方法是一致的。判斷一個數(shù)是不是3的倍數(shù)要看它各位上數(shù)的和是不是3的倍數(shù),特征與判斷方法與5的倍數(shù)、2的倍數(shù)完全不同。所以這部分教材分兩段編寫,把5和2的倍數(shù)的特點合并在一道例題里教學,把3的倍數(shù)的特點安排在另一段里教學。兩段教材都是“尋找特點——利用特點判斷”的教學線索,給學生很大的自主活動空間。
。1) 第74頁例題先在百數(shù)表里5的倍數(shù)上畫“△”、2的倍數(shù)上畫“○”,于是表里出現(xiàn)兩列畫“△”的數(shù)和五列畫“○”的數(shù),其中一列數(shù)上畫“△”也畫“○”。這些符號有利于學生分別觀察5的倍數(shù)和2的倍數(shù),發(fā)現(xiàn)表現(xiàn)在個位上的特點。也便于發(fā)現(xiàn)哪些數(shù)既是2的倍數(shù),又是5的倍數(shù)。結合2的倍數(shù),聯(lián)系以前講過的雙數(shù)和單數(shù),列舉了哪些數(shù)是偶數(shù)、哪些數(shù)是奇數(shù)。這道例題安排的操作活動和提出的問題難度都不大,教學時要盡量讓學生通過自主探索和合作交流建構自己的認識。
“想想做做”的安排很有層次。第1、2題是簡單的判斷,初步應用2的倍數(shù)與5的倍數(shù)的特點,起鞏固知識的作用。第3、4題按要求組數(shù),第3題組成的是兩位數(shù),沒有明確每名學生都要全部、有序地寫出符合要求的數(shù),可以通過交流達到全部、有序的要求。第4題組成的是三位數(shù),“你排出了哪幾種”這個問題對有條件的學生要求有序思考并排出所有的數(shù),對少數(shù)有困難的學生應盡量多排出幾種,并向同伴學習有序的思考方法。第5題通過在數(shù)表中涂色,體會4的倍數(shù)一定是2的倍數(shù),2的倍數(shù)不都是4的倍數(shù)。
。2) 發(fā)現(xiàn)3的倍數(shù)的特點比較難,第76頁例題充分研究學生的思維習慣和學習需要,作了五步安排:
第一步在百數(shù)表里3的倍數(shù)上畫“○”,這項活動讓學生看到3的倍數(shù)與2的倍數(shù)、5的倍數(shù)不同,分散在表的各行各列里。由此產(chǎn)生猜想,3的倍數(shù)的特點可能與2、5的倍數(shù)不同。
第二步提出“個位上是3、6、9的數(shù)都是3的倍數(shù)嗎”這個問題,學生可以在百數(shù)表上看到畫“○”的數(shù)的個位上并不都是3、6或9,還有其他數(shù)。許多個位上是3、6、9的數(shù)上沒有畫“○”,它們都不是3的倍數(shù)。學生還可以任意寫出一些個位上是3、6、9的數(shù),逐一檢驗是否是3的倍數(shù)。這一步的目的是讓學生更清楚地知道,3的倍數(shù)的特點不表現(xiàn)在它的個位上。
第三步為學生指點新的探索方向。把3的倍數(shù)用計數(shù)器的算珠表示,看看用幾顆珠。先找較小些的兩位數(shù),再找更大的數(shù)。通過計算表示各個數(shù)所用算珠的顆數(shù),初步發(fā)現(xiàn)算珠的顆數(shù)總是3、6、9、12等,這幾個數(shù)都是3的倍數(shù)。這一步對發(fā)現(xiàn)3的倍數(shù)的特點關系很大,學生也樂意進行,要適當多安排一點時間。
第四步把算珠的顆數(shù)轉化成各位上數(shù)的和,發(fā)現(xiàn)3的倍數(shù)的特點,這一步是教學難點。要引導學生從“數(shù)的某一位上是幾,計數(shù)器的那一位上就撥幾顆珠”這一事實理解計數(shù)器上算珠的總顆數(shù)就是這個數(shù)各位上數(shù)的和。從算珠的顆數(shù)是3的倍數(shù)推理出各位上數(shù)的和是3的倍數(shù)。
第五步是“試一試”,通過不是3的倍數(shù)的數(shù),各位上數(shù)的和不是3的倍數(shù)的研究,從另一個角度驗證上面發(fā)現(xiàn)的規(guī)律是正確的。
教材設計的五步教學過程是連貫的,步步深入、逐漸逼近數(shù)學的本質內(nèi)容。既有對例證的細致研究,又有反例作驗證,是科學而嚴密的過程。
“想想做做”里的習題數(shù)學思考的含量都比較高,除了第1題利用3的倍數(shù)的特點進行簡單判斷外,其他習題都需要仔細地想一想。如第2題要準確理解題意,“除以3有余數(shù)”即不是3的倍數(shù)的意思。第3題在方框里填數(shù)字的時候,要依據(jù)3的倍數(shù)的特征進行推理,而且答案是多樣的,在每個方框里都有3個數(shù)字可填。第5題是組成三位數(shù),首先要從四張數(shù)字卡片中選擇3張,而且3張數(shù)字卡片之和必須是3的倍數(shù),有兩種選擇,分別是5、6、7和0、5、7。然后再有序地把選出來的卡片排一排,組成三位數(shù)。前一種選擇能排出6個不同的三位數(shù),后一種選擇只能排出4個不同的三位數(shù)。這些習題不要急于得出答案和結論,要注重過程,提供充分的時間,鼓勵學生自主探索或合作學習。
3? 通過寫因數(shù)、比因數(shù)個數(shù)等活動,建立素數(shù)和合數(shù)的概念。
第三部分教學素數(shù)和合數(shù),教學活動的線索是: 分別找到2、3、5、6、8、9等自然數(shù)的因數(shù)→按因數(shù)的個數(shù)把這些自然數(shù)分類→接受素數(shù)、合數(shù)等數(shù)學概念→應用數(shù)學概念判斷50以內(nèi)的自然數(shù)是素數(shù)還是合數(shù)。這些活動難度都不大,學生都能進行。在按因數(shù)的個數(shù)把、2、3、5、6、8、9分類時,可能需要稍微點撥,明確分類的標準。在講述素數(shù)、合數(shù)概念時,語言必須準確。
這部分教材有三個特點: 一是在寫2、3、5、6、8、9的因數(shù)時充分利用學生的已有能力,讓他們在獨立寫因數(shù)的過程中體會這些數(shù)的因數(shù)個數(shù)不同;二是用填空形式引導學生把2、3、5、6、8、9按因數(shù)的個數(shù)分類,避免教學中出現(xiàn)不必要的枝節(jié);三是主要使用“素數(shù)”這個名詞,“質數(shù)”只是帶了一帶。這對學生無所謂,教師在開始階段可能不習慣。
“想想做做”第1題利用11~20各數(shù),讓學生再次經(jīng)歷認識素數(shù)和合數(shù)的過程。要通過例題、“試一試”和這道題,讓學生記住20以內(nèi)的八個素數(shù): 2、3、5、7、11、13、17、19。至于更大的素數(shù)就不要求記憶了。
4? 練習六整理和應用全單元教學的數(shù)學知識。
本單元教學了許多數(shù)學概念,是按下圖的線索展開的。
乘法算式倍數(shù)2、5、3的倍數(shù)的特征偶數(shù)與奇數(shù)因數(shù)素數(shù)與合數(shù)
為了幫助學生進一步清晰地認識概念,提升應用數(shù)學知識的水平,練習六把上面的結構圖分成四塊組織整理。
(1) 擴大倍數(shù)與因數(shù)概念的背景。
倍數(shù)與因數(shù)的概念是在自然數(shù)(一般不包括0)的乘法算式上教學的。在一道乘法算式中,學生明白了倍數(shù)關系和因數(shù)關系。練習六第1題繼續(xù)在除法算式中理解被除數(shù)是除數(shù)和商的倍數(shù),除數(shù)和商都是被除數(shù)的因數(shù)。這樣,學生對倍數(shù)關系和因數(shù)關系的認識得到深入,對用除法找一個數(shù)的因數(shù)的方法有進一步的體會。做到這一點并不困難,有除法的意義和乘、除法的關系為基礎。
。2) 數(shù)學問題和實際問題并舉,綜合應用2、5、3的倍數(shù)特征的知識。
第2~4題練習2、5、3的倍數(shù)的特征,其中兩道題是數(shù)學問題,一道題是實際問題。數(shù)學問題的形式容易引起對有關數(shù)學知識的回憶,實際問題的形式反映了數(shù)學內(nèi)容在現(xiàn)實生活中的存在和應用。先安排數(shù)學問題,再安排實際問題,有助于學生在解決實際問題時運用有關的數(shù)學知識。第4題有一定的綜合性,能發(fā)展思維的條理性,培養(yǎng)全面考慮問題的能力。
。3) 對容易混淆的概念,進行比較和區(qū)分。
學生對奇數(shù)與素數(shù)、偶數(shù)與合數(shù)往往混淆不清,第6題是為了區(qū)分這些概念而設計的。先在1~20各數(shù)中用“○”圈出素數(shù)、用“△”圈出偶數(shù),回憶素數(shù)的意義和偶數(shù)的意義;再回答題中的兩個問題,體會它們是不同的概念。要注意的是,兩個問題都是看著表格呈現(xiàn)的現(xiàn)象回答的。其中的“2”既畫了“○”,又畫了“△”,這就表明素數(shù)里有偶數(shù),偶數(shù)里有素數(shù)。教學時既要引導學生主動區(qū)分不同的概念,正確回答問題,又不要對這些問題進行抽象的,甚至文字游戲式的機械操練。
(4) 緊扣基礎知識探索數(shù)學現(xiàn)象的內(nèi)在規(guī)律。
第7題對學生來講有兩個特點: 一是涉及了幾個數(shù)學概念,有連續(xù)的自然數(shù)、連續(xù)的奇數(shù)、3的倍數(shù)等,二是兩個問題都是微型課題,題目中的“找一找、算一算”指點了研究方法。
第10題把五個數(shù)分別寫成兩個素數(shù)相加的形式。這五個數(shù)都是偶數(shù),其實任何一個大于2的偶數(shù)都可以寫成兩個素數(shù)相加的形式。如果學生有興趣,可以繼續(xù)嘗試。
歡迎掃描二維碼
關注奧數(shù)網(wǎng)微信
ID:aoshu_2003
歡迎掃描二維碼
關注中考網(wǎng)微信
ID:zhongkao_com