中国大陆国产高清aⅴ毛片_久热re_日韩精品亚洲Aⅴ在线影院_一本色道久久综合亚洲精品不卡_久久久久亚洲AV无码永不

奧數(shù)網(wǎng)
全國站

奧數(shù) > 小學資源庫 > 教案 > 小學數(shù)學教案 > 六年級數(shù)學下冊教案 > 正文

小學六年級數(shù)學第二單元《長方體和正方體》教案

2009-07-15 12:48:06     下載試卷     標簽:六年級 正方體 長方體 教案

  學生在一年級教材中直觀認識了長方體和正方體,在數(shù)學學習中多次把長方體、正方體木塊作為學具,對它們的形狀有了初步的、整體的感受。知道生活中許多物體的形狀是長方體或正方體,能夠識別一些常見的物體是什么形狀。本單元系統(tǒng)、深入地教學長方體和正方體的知識,內(nèi)容很多。下表是全單元的內(nèi)容與編排。

  認識形體

  長方體、正方體的面、棱、頂點,結(jié)構(gòu)與特征。(例 1、例2)

  長方體、正方體表面的展開圖(例3)

  表面積

  表面積的意義和計算方法(例4)

  表面積的實際應(yīng)用(例5)

  體積

  體積的意義、容積的意義(例6、例7)

  常用的體積單位和容積單位(例8)

  長方體、正方體的體積計算公式(例9、例10)

  體積單位的進率及簡單換算(例11)

  “整理與練習”實踐活動

  本單元教學內(nèi)容在編排上有以下特點。

  第一, 有一條合理的編排線索。先教學長方體、正方體的特征,再教學它們的表面積,然后教學體積,是一條符合知識間的發(fā)展關(guān)系,有利于學生認知的線索。把形體的特征安排為第一塊內(nèi)容,能為后面的表面積、體積的教學打下扎實的基礎(chǔ)。如果不理解長方體的6個面都是長方形,且相對的面完全相同,就不可能形成長方體表面積的計算方法。如果不建立長方體的長、寬、高的概念,體積公式就是無本之木、無源之水。把表面積安排在體積之前教學,是因為學生已經(jīng)有了面積的概念,掌握了常用的面積單位,會計算長方形、正方形的面積,教學表面積的條件比體積充分。而且通過表面積的教學,更深一層掌握長方體、正方體的特征,對教學體積是有益的。在體積這部分知識里,先教學體積的意義和常用單位,這些都是重要的基礎(chǔ)知識。建立了體積概念和體積單位概念,才能探索體積計算公式。把體積單位的進率安排在體積公式之后教學,就能通過計算獲得進率。這樣,體積單位的進率就是意義建構(gòu)的,而不是機械接受的。

  第二,加強了空間觀念。教學長方體和正方體,歷來都很重視發(fā)展空間觀念。本單元不僅在傳統(tǒng)的基礎(chǔ)知識的教學時加強培養(yǎng),還充實了長方體、正方體表面展開的內(nèi)容。過去教材里講長方體的表面展開是為了教學它的表面積及計算,現(xiàn)在教學表面的展開,更是為了發(fā)展空間的觀念!稊(shù)學課程標準(實驗稿)》把幾何體與其展開圖之間的轉(zhuǎn)化作為空間觀念的一個內(nèi)容,把能進行這些轉(zhuǎn)化作為空間觀念的一種表現(xiàn)。教材一方面把正方體、長方體紙盒展開,在展開圖里找到原來形體的每個面;另一方面又提供一些圖形,把它們折疊圍成立體,感受圖形的各部分在立體上的位置,讓學生的空間觀念在這些活動中實實在在地獲得發(fā)展。另外,設(shè)計的五道思考題和實踐活動《表面積的變化》,加大了空間想像的力度,都以發(fā)展空間觀念為主要目的。

  第三,注重知識的實際應(yīng)用。本單元教學的知識與學生的日常生活有密切的聯(lián)系。在現(xiàn)實的問題情境中能發(fā)現(xiàn)和認識數(shù)學知識,習得的概念和方法能應(yīng)用于解決實際問題。教材盡力從數(shù)學的角度提出問題、解釋問題,引導學生綜合應(yīng)用數(shù)學知識、技能解決問題,處處能看到數(shù)學與生活的有機結(jié)合。如認識長方體、正方體的特征以后,收集這樣的實物并量出長、寬、高或棱長;在做紙盒和魚缸的實際問題中教學表面積的計算和應(yīng)用;用初步建立的體積(容積)概念比較物體的大小;用學到的體積單位計量常見物體的體積、常見容器的容量;靈活應(yīng)用體積公式計算沙坑里沙的厚度、塑膠跑道的用料問題……

  一、 觀察、整理——認識長方體、正方體的特征。

  例1教學長方體和正方體的特征,把主要精力放在長方體上。這是由于長方體比正方體復雜,發(fā)現(xiàn)長方體的特征需要開展許多活動。而且,研究長方體的學習活動經(jīng)驗可以遷移到認識正方體中去。例題呈現(xiàn)一些圖片,如長方體或正方體包裝盒、家用電器等,在圖片的啟發(fā)下說說生活中哪些物體的形狀是長方體,哪些物體的形狀是正方體。在現(xiàn)實的情境中引出本單元的研究對象。

  觀察實物,整理特點是認識長方體、正方體的主要教學活動。例1的教學過程安排成三步。

  1. 觀察物體,理解直觀圖,認識面、棱和頂點。

  三年級(上冊)通過觀察長方體和正方體,已經(jīng)知道在不同位置看到的面的個數(shù)不同。有時只能看到一個面,有時能同時看到兩個面,最多能同時看到三個面。例題以這些經(jīng)驗為教學起點,在觀察物體的基礎(chǔ)上理解長方體、正方體的直觀圖,認識它們的面、棱和頂點。

  把立體的樣子畫在紙上,從長方體、正方體實物到它們的直觀圖,是空間觀念的一次發(fā)展。在實物上只能看到一部分面,在直觀圖上實線圍出了能看到的面,用虛線勾畫不能直接看到的面。把立體與其直觀圖有機聯(lián)系,感受直觀圖真實表達了立體的形狀,并在看到直觀圖時,能想到相應(yīng)的立體,這是空間觀念的表現(xiàn)。直觀圖是教學難點,從有利于學生理解出發(fā),可以分兩步出現(xiàn)。先畫出能夠看到的面,再勾出不能看到的面。

  面、棱和頂點是長方體、正方體結(jié)構(gòu)的要素,是三個最基本的概念,還是研究長方體、正方體特征的出發(fā)點。按“面—棱—頂點”的次序教學,有利于建構(gòu)它們的意義。物體有“面”是已有認識,只要在立體上摸摸面,在直觀圖上指出面,就體會了長方體、正方體的面,不必作過多的解釋。兩個面相交的線叫做“棱”,是對棱的數(shù)學解釋。要通過觀察和在實物上的演示,直觀感受“兩個面相交”的含義,清楚地看到相交處是線。要強調(diào)這條線不能叫做長方體、正方體的邊,應(yīng)稱作棱。三條棱相交的點叫做“頂點”,要通過在實物上摸一摸、在直觀圖上指一指等活動,看到每一個頂點都是三條棱的交點,這是認識頂點的關(guān)鍵。

  2. 觀察物體,由“量”到“質(zhì)”認識長方體的特征。

  第11頁認識長方體的特征,鼓勵主動探索,重視合作交流,遵循逐漸認識的規(guī)律。首先數(shù)出長方體、正方體有幾個面、幾條棱和幾個頂點,并把結(jié)果填在教材預設(shè)的表格里,從“量”的角度認識長方體、正方體的特征。填表能起三個作用:一是及時記錄獲得的信息,防止流失,有利于特征的整體性;二是通過“寫”出有關(guān)的數(shù)量,加深印象,有利于記憶;三是顯示出長方體、正方體都有6個面、12條棱和8個頂點,有利于感受長方體與正方體的聯(lián)系。接著深入研究長方體的特征,教材提示了可進行的活動是看、量、比;研究的對象是長方體面的形狀與大小,棱的長度與相互關(guān)系;研究的目的是發(fā)現(xiàn)長方體的特征。在學生充分活動的基礎(chǔ)上組織交流,概括出長方體的特征。教學時要注意四點:① 學生對長方體特征的認識很難一步到位,總是由表及里、由淺入深地發(fā)展的。認識長方體的特征既讓學生自主探索,又要教師引導點撥。如發(fā)現(xiàn)6個面都是長方形比較容易,而相對的面完全相同往往需要教師引導學生去關(guān)注、去比較。至于長方體的3組棱及每組4條棱長度相等,可能更需要教師給予點撥。再如學生的發(fā)現(xiàn)往往是局部的、點滴的,表達往往是不嚴密的,這就需要教師匯集生成的資源,提升語言水平,幫助抽象概括。② 例題里觀察的是一般的長方體,目的是緊扣長方體的本質(zhì)特征教學。把較特殊的長方體安排在練習三第1、2題里出現(xiàn),學生不會因為它有兩個面是正方形,對它是長方體產(chǎn)生懷疑。這樣安排也符合正方體從屬于長方體的關(guān)系。③ 學生間的學習方式總是多樣的,部分學生喜歡探索發(fā)現(xiàn),也有部分學生需要有意義的接受,合作交流能滿足學生的不同需要。要讓獨立探索有困難的學生共享成果,在聽懂同伴發(fā)言的基礎(chǔ)上,給他們親自驗證、親身感受的機會。④ 教學長、寬、高是繼續(xù)認識長方體,要在“頂點”與“棱”的概念的基礎(chǔ)上進行。必須清楚相交于一個頂點的三條棱分別是長方體三組棱中的一條,把它們分別叫做長方體的長、寬、高。不但要在立體上指出,還要在直觀圖上看出。如果適量地把長方體橫放、豎放、側(cè)放,根據(jù)不同的擺放位置,讓學生說說它的長、寬、高,可以防止死記硬背,發(fā)展空間觀念。

  3. 觀察物體,獨立發(fā)現(xiàn)正方體的特征。

  由于正方體比長方體簡單,又有認識長方體特征的經(jīng)驗,所以正方體特征的教學會比較輕松。教材先提出“正方體的面和棱各有什么特征”這個研究課題,讓學生在獨立探索以后,小組交流自己的發(fā)現(xiàn)。盡管正方體的特征比較簡單、容易得出,教學也不能過于倉促。仍要讓學生指指相對的面、相對的棱,說說得出結(jié)論的過程與方法,想想“6個面是完全相同的正方形”與“12條棱長度相等”之間有什么必然聯(lián)系……使形象思維與抽象思維,以及數(shù)學活動的能力都得到發(fā)展。

  二、 展、折,想像——認識長方體、正方體的展開圖。

  第12頁教學正方體、長方體的展開圖,這部分內(nèi)容的教育價值和教學要求,在前面介紹本單元教材編排特點時已經(jīng)闡述,不再重復。這里主要分析教材,提出教學建議。

  1. 初步知道“展開圖”的含義,加強對正方體的認識。

  例3先教學正方體的展開圖,原因仍然是正方體的特征比較簡單。例題詳細展示了把正方體紙盒展開的步驟,用紅線標出每步剪開的棱,最后還把剪開后的紙盒攤平。引導學生首次經(jīng)歷立體到展開圖的轉(zhuǎn)化過程,從中明白展開圖是平面圖形,清楚地看到展開圖由6個相同的正方形組成。教學這道例題要注意反思,即得到正方體展開圖以后,要回憶是怎樣展開的,思考為什么展開圖里有6個同樣的正方形,正方形的邊與正方體的棱有什么聯(lián)系……通過反思,既加強對展開圖的認識,又加強對正方體特征的認識,更通過立體與展開圖關(guān)系的思辨發(fā)展空間觀念。

  除了依照例題設(shè)計的剪法展開,還可以沿其他的棱剪。“大象”卡通提出的要求,是讓學生再次進行展開正方體的活動,體會沿著不同位置的棱剪,得到的展開圖形狀不同。但是,展開圖由6個相同的正方形組成,每個正方形的邊都是正方體的棱是相同的。從而理解正方體展開圖既有多樣性,又有確定性。多樣性是剪法不同的結(jié)果,確定性是正方體的特點決定的。

  2. 自主研究長方體的展開圖,加強對長方體的認識。

  長方體的展開圖安排在“試一試”里讓學生剪紙盒得到,學習正方體展開圖的經(jīng)驗和體會能支持他們主動地操作、交流。沿著哪幾條棱剪?在教材里沒有規(guī)定,可以自主選擇。因此,得到的展開圖也是多樣的,在每個展開圖里都可以看到6個長方形,從而體驗了長方體展開圖形狀的多樣性和組成的確定性?ㄍㄌ岢龅“從展開圖中找到3組相對的面”是富有思維含量的問題,能引發(fā)學生細致地研究展開圖,并把展開圖與立體聯(lián)系起來思考。要鼓勵學生進行展開圖→長方體→展開圖→長方體……的折、展活動,反復地看展開圖里的每一個長方形,想它在長方體的位置;看長方體的面,想它在展開圖里的位置。在體驗立體與展開圖相互轉(zhuǎn)化的過程中發(fā)展空間觀念。

  另外,在展開圖上想長方體的長、寬、高,并把長、寬、高轉(zhuǎn)換成展開圖中各個長方形的長與寬,也有益于空間觀念的發(fā)展,還能為表面積的教學作鋪墊。

  3. 判斷哪些圖形折疊后能圍成正方體或長方體,加強對體的認識。

  第12頁“練一練”第2題提供的每個圖形都由6個相同的正方形組成,判斷這些圖形中哪些折疊后能圍成正方體。第14頁第5題的每個圖形都由6個長方形組成,判斷哪幾個圖形能折疊后圍成長方體。其中部分圖形圍不成正方體或長方體的原因是,折疊的時候部分正方形或長方形重疊,構(gòu)不成有6個面的立體。因此,這兩道題一方面加強了展開圖與立體的轉(zhuǎn)化,另一方面加強了對長方體、正方體都有6個面的認識。

  學生進行這些判斷會有困難,為此提出兩點教學建議: 第一,在例3和“試一試”里要把沿不同的棱剪紙盒得到的各個展開圖充分進行展示和交流。先認識圖中所示的“標準”狀態(tài)的展開圖,再體會展開圖還有其他形狀,并在各個展開圖上指出立體的相對的面。第二,允許學生靈活地“先想后圍”或者“先圍后想”。如果看到的圖形是“標準”的或接近“標準”狀態(tài)的,可以先判斷它能否圍成立體,想想圍成的立體是什么樣子,然后折疊驗證判斷和想像。如果看到的圖形不是“標準”狀態(tài)的,能不能圍成立體難以判斷,可以先動手操作,從中體會為什么能圍成或圍不成立體。

  三、 分解,組合——有意義地建構(gòu)表面積的知識。

  教學表面積知識編排的兩道例題都是關(guān)于長方體的,正方體的表面積通過“試一試”在練習中教學,這是因為長方體表面積的概念和計算方法能遷移到正方體上去。表面積的教學分兩步進行,先是例4與“試一試”,把表面積的意義和算法結(jié)合在一起。然后是例5,著重于表面積知識的應(yīng)用,靈活地解決與長方體、正方體表面積有關(guān)的實際問題。

  1. 聯(lián)系已有知識經(jīng)驗,探索表面積的知識。

  例4的問題情境是做一個長方體紙盒至少要用多少硬紙板,在掌握長方體特征的基礎(chǔ)上,學生會想到這個問題與長方體各個面的面積有關(guān),并出現(xiàn)不同的計算方法。“猴子”卡通和“兔子”卡通的算法是比較典型的兩種方法,它們有相同的思路:求出紙盒各個面面積的總和,但算法不同: 把3組相對的面的面積相加,把每組相對面中各個面的面積和乘2。前一種算法得益于第13頁第3題的鋪墊,后一種算法受到了(長+寬)×2=長方形面積的啟發(fā)。兩種算法都是計算長方體表面積的較好方法,相同的思路和乘法分配律溝通了兩種算法的內(nèi)在聯(lián)系,教材鼓勵學生選用自己喜歡的方法算出結(jié)果。

  學生求至少要用多少硬紙板所想到的各種算法,都應(yīng)用了“分解—組合”的思想方法,即先把一個較復雜的新穎問題分解成若干個簡單問題,再把這些簡單問題組合起來。反思并體驗這種思想方法,就能很好地理解表面積的意義,也不需要機械地記憶表面積的算法。學生對正方體有完全相同的6個正方形已經(jīng)有深刻的認識,“試一試”求做正方體紙盒至少用多少硬紙板,一般都會把一面的面積乘6。得出的“長方體(或正方體)6個面的總面積,叫做它的表面積”,既形成了表面積的概念,也總結(jié)了計算表面積的方法。

  2. 聯(lián)系生活經(jīng)驗,靈活解決實際問題。

  例5制作上面沒有玻璃的魚缸,利用長方體表面積的知識解決實際問題。通過實物圖幫助理解這個實際問題的特點,讓學生明白所用玻璃的面積是長方體5個面的面積和,從而主動想出算法。“小鳥”卡通和“兔子”卡通仍然應(yīng)用了“分解—組合”的思想方法,把實際問題抽象成求前、后、左、右和下面5個面的面積和的數(shù)學問題,或者抽象成從表面積(6個面的總面積)里去掉一個面的面積的數(shù)學問題。兩條思路各有特點,前一條突出的是空間想像,要找準并正確計算有關(guān)的各個面的面積。后一條的思路負荷輕、思考難度小,能減少錯誤的發(fā)生。“還有其他方法嗎”主要反映在按“小鳥”卡通的思路,可以列出5個面的面積連加的式子,也可以列出前、后兩個面的面積加左、右兩個面的面積,再加下面面積的式子。要注意的是,這道例題鼓勵解決問題的策略與方法多樣,并不要求學生能夠一題多解。教材仍然讓學生選擇一種算法。

  “練一練”和練習四里還有只計算長方體的前、后、左、右4個面面積和的實際問題,缺少左側(cè)面的長方體的問題等。教材為部分習題配了示意圖,便于學生直觀感受實際問題是求哪些面的面積之和。部分習題沒有配置實物圖,可以在現(xiàn)實的生活空間里思考。如粉刷平頂教室的頂面和四周墻壁,只要看看自己的教室,就能把題目里的長、寬、高落到實處。又如臺階的問題,可以找個臺階看看,理解什么是它的占地面積以及地磚鋪在哪些面上。計算長方體火柴盒的內(nèi)盒和外盒所有的材料,綜合應(yīng)用了長方體特征和表面積知識,再次體驗實際問題是多變的,要靈活應(yīng)用知識才能正確解答。

  四、 實驗、領(lǐng)悟——初步建立體積概念。

  例6和例7分別教學體積的意義和容積的意義,容積的意義要建立在體積概念上,因而例6是這部分教材的重點。學生形成體積概念也是教學的難點,這兩道例題的教學只能初步感受體積的含義,在后面教學常用的體積單位,以及長方體、正方體的體積計算時,還要通過測量和描述,進一步理解體積的意義。

  1. 在有限的空間里領(lǐng)悟體積。

  物體所占空間的大小叫做體積。“空間”“物體占有空間”“所占空間的大小”都是體積概念的內(nèi)涵,是建立體積概念必須解決的子概念。例6利用杯子的空間,把感悟體積的過程設(shè)計成三步。第一步是初步體會“空間”和“物體占空間”。兩個同樣的玻璃杯,左邊的盛滿水,右邊的放一個桃,把左邊杯里的水倒向右杯,會剩下一些水。“杯中有一部分空間被桃占去了”這句話解釋了現(xiàn)象、回答了原因,引出了“空間”這個詞,讓學生在現(xiàn)實的背景下感知“空間”的含義。這一步要把生活常識引向數(shù)學認識,看著放了桃的杯子,仔細領(lǐng)悟“杯中有一部分空間被桃占去了”的意思,是十分重要的教學活動。若有需要,還可以在一只透明空杯的上口放一本書,讓學生看著杯子的里面體會杯子的空間。再把桃放入杯里,仍然用書蓋住上口,看著杯里的桃,體會它占有杯子的一部分空間。第二步是感受不同的物體占的空間有大、有小。兩個同樣的杯子,一個杯里放1個桃,另一個杯里放1個荔枝,桃比荔枝大,分別往兩個杯里倒水,顯然前一個杯里可以倒入的水比后一個杯少。讓學生回答“為什么”,不能簡單地用“桃大荔枝小”來解釋。要像“兔子”卡通那樣想和說,用“桃占的空間大,荔枝占的空間小”來回答問題。理解“桃大”是指它“占的空間大”,“荔枝小”是指它“占的空間小”,從而獲得“不同物體占的空間大小不同”的體驗。第三步繼續(xù)體會每個物體都占有一定的空間。觀察圖片里的番茄、荔枝和桃,先思考哪一個占的空間大,再想想這三個水果分別放在三個杯里,往杯中倒水,哪個杯里水占的空間大。這是兩個連續(xù)的關(guān)于物體占有空間的問題,可從前一問題的答案推理得出后一問題的答案。由于蘋果占的空間大,杯子盛水的空間就小;番茄占的空間小,杯子盛水的空間就大,這就感受了每個物體都占有一定大小的空間,由此得出體積的意義:物體所占空間的大小叫做物體的體積。

  “舉例比比兩個物體體積的大小”是為了鞏固體積概念,應(yīng)該對學生提出兩點要求:一是用好“體積”這個詞,二是聯(lián)系實物解釋什么是它的體積。如電冰箱的體積是它占有空間的大小,電冰箱的體積比電視機的體積大。

  練習五第1、3題進一步領(lǐng)悟體積的意義。把同樣的盒裝餅干堆成3堆,各堆的形狀不同、體積相同。理解體積是物體占有空間的大小,與物體的形狀無關(guān)。用小正方體擺出較大的正方體或長方體,理解體積大的物體占的空間大,體積相等的物體占的空間大小相等。

  2. 從體積引出容積,初步建立容積概念。

  容積與體積是兩個既有聯(lián)系,又有區(qū)別的概念,教學容積能進一步理解體積。

  例7教學容積的意義,以體積概念為生長點。圖畫里有兩盒書,一盒是《四大名著》,另一盒是《成語故事》。先在直觀情境里比較哪盒書的體積大些,再從“左邊盒子里書的體積大”引出“左邊盒子的容積大”。書的體積是舊知,盒的容積是新知,教學既要以舊引新,也要體現(xiàn)容積與體積的不同意義。教材中比較書的體積,是看著兩盒書進行的。而容積是指著兩個書盒子講的,從而凸現(xiàn)容積的屬性,以及它與體積的區(qū)別。

  為了有利于建立容積概念,教學時應(yīng)該補充一些實例,讓學生懂得“容器”,體會每個容器能容納的體積是有限的、確定的。在充分感知的基礎(chǔ)上,得出“容器所能容納物體的體積,叫做這個容器的容積”。

  “試一試”的教學要注意兩點: 一是讓學生解釋玻璃杯容積的含義,理解每個杯的容積是指它能容納多少水;二是通過實驗比出哪個杯的容積大。如在一個杯里裝滿水,再往另一個杯里倒,看能不能裝滿另一個杯子,會不會有剩下的水。學生應(yīng)該是實驗設(shè)計、操作和結(jié)論得出的主體。

  “練一練”第2題兩個盒子里裝的杯子的數(shù)量不同,練習五第4題兩個盒子外面同樣大,里面裝的儀器數(shù)量不等,這些直觀情境能幫助學生正確理解容積的意義,體會容器的體積與容積是不同的概念。

  五、 認識,應(yīng)用——初步掌握常用的體積單位。

  本單元教學的體積單位有立方厘米、立方分米、立方米。有了體積單位,就能測量、表達物體的體積,也能進一步體會體積的意義。

  1. 認識體積單位包括兩方面內(nèi)容。

  例8教學常用的體積單位,首先是測量、計量體積需要體積單位,然后是各個體積單位的具體含義。

  觀察圖中的長方體和正方體,很難直接判斷哪一個體積大。把它們切成同樣大的正方體,就能比出體積的大小。這段教材讓學生明白,有了體積單位就能準確計量物體的體積。圖中的長方體是9個小正方體那么大,大正方體是8個小正方體那么大,長方體的體積比正方體大。還要讓學生感受用于測量物體體積的單位,應(yīng)該是確定的小正方體,由此導出常用的三個體積單位。把長方體和正方體切成同樣的小正方體,最好是學生自主想到的方法。如果有困難,也可以看書或由教師告訴他們。但是,必須理解這個方法,體會其合理性,激發(fā)學習體積單位的愿望。

  教學體積單位的具體含義,要準確地表達1立方厘米、1立方分米、1立方米各是多大的正方體。教材在文字描述這些體積單位的意義的同時,還選擇一些輔助方法,讓學生體會體積單位。棱長1厘米的正方體,體積是1立方厘米。教材里畫出了1立方厘米的示意圖,配合語言描述,讓學生了解1立方厘米。受版面限制,教材里畫出1立方分米、1立方米的直觀圖有困難。因此,在1立方分米的示意圖的旁邊,畫一個體積接近1立方分米的粉筆盒,利用熟悉的物體,感知1立方分米是多大。用3根1米長的木條,在墻角搭一個1立方米的空間,在現(xiàn)實情境中體會1立方米。

  尋找體積接近1立方厘米、1立方分米的物體,是帶著體積單位的初步表象觀察周圍的事物,進一步體驗這些單位。教材舉的“手指頭的體積大約1立方厘米”這個實例,能引起觀察手指頭的興趣,加強1立方厘米的表象,再通過自主尋找實例,對1立方厘米的認識就深刻了。

  2. 掌握體積單位有兩方面的要求。

  掌握體積單位,要能應(yīng)用體積單位計量物體的體積。在這部分教材里,一是說出由1立方厘米小正方體擺成的物體的體積,二是為常見的物體選擇合適的體積單位。

  第21頁說出用4個或6個棱長1厘米的正方體擺成的長方體的體積,第一次量化描述物體的體積。兩個長方體的結(jié)構(gòu)都很直觀,分別說出它們的體積非常容易。教學不能滿足于答案,要讓學生說出怎樣想的,進一步理解體積的意義和體積單位的用途。第24頁第6題里的三個物體都是1立方厘米的正方體擺成的,其中兩個物體的結(jié)構(gòu)不是很直觀。說出它們的體積,要數(shù)出各是幾個正方體擺成的,尤其是想到那些不能直接看到的正方體,能發(fā)展空間觀念。第8題根據(jù)三視圖擺出物體,說出體積。擺出物體是解決問題的關(guān)鍵,是發(fā)展空間觀念的機會。這個物體不復雜,多數(shù)學生能夠擺出來。教學時不必補充這樣的練習,更不要增加擺出物體的難度。

  第24頁第7題為物體選擇合適的體積單位。能不能填出合適的單位,一般決定于三個因素:一是對物體的熟悉程度,二是具有體積單位的表象,三是能開展正確而有效的思考。如學生都熟悉西瓜,知道1個西瓜大致是多大,如果體積是8立方厘米或8立方米,顯然都不符合實際。反之,為不熟悉的物體選擇體積單位,只能是脫離實際地亂猜,這是毫無意義的。教材里的橡皮、集裝箱、水桶等都是多數(shù)學生比較熟悉的物體。教學時如果補充類似的練習,一定要注意這點。

  3. 進一步教學升與毫升。

  四年級(下冊)曾經(jīng)教學升與毫升,初步知道它們都是計量液體的單位,也是容器的容量單位。對1升、1毫升液體是多少有了初步的認識,F(xiàn)在教學升和毫升,主要有兩個內(nèi)容: 第一,升和毫升都是體積單位,用于計量液體的體積,也用于計量容器的容積。把升與毫升納入體積單位的范疇,建立新的知識結(jié)構(gòu),是已有認識的深化和提高。第二,1升等于1立方分米,1毫升等于1立方厘米,利用1立方分米、1立方厘米的表象理解1升與1毫升的實際大小,使原有認識更清晰、更牢固。

  六、 操作,發(fā)現(xiàn)——探索長方體、正方體的體積公式。

  例9和例10教學長方體的體積計算公式,并推導出正方體體積計算公式。在初步掌握兩個體積公式以后,還把它們統(tǒng)一起來。

  1. 讓學生探索求積公式。

  長方體、正方體體積公式的教育價值,不能局限于知道公式和應(yīng)用公式。況且,記憶和照公式列式計算的思維含量較低。得出體積公式能加強對體積意義、體積單位的理解;能發(fā)展解決問題的策略,積累數(shù)學活動經(jīng)驗;能培養(yǎng)創(chuàng)新精神和實踐能力,有利于形成積極的情感態(tài)度。因此,教材十分重視探索體積公式的過程,設(shè)計、安排了認知線索和主要的探索活動。

  例9和例10是兩個層次的活動,不僅操作內(nèi)容、要求有區(qū)別,而且思維程度有差異。例9用1立方厘米的正方體擺出4個不同的長方體,從已有的知識和能力開始教學新知識。沒有規(guī)定長方體的大小,學生可以按自己的意愿去擺,既調(diào)動積極性,又為合作學習營造了氛圍。在教材預設(shè)的表格里填寫每個長方體的長、寬、高,所用正方體個數(shù)以及體積,可以獲得兩點感受:一是沿著長、寬、高各擺幾個正方體,長方體的長、寬、高就分別是幾厘米;二是長方體里有多少個正方體,體積就是多少立方厘米,體積應(yīng)該與長、寬、高有關(guān)。這兩點感受能使學生明白:探索長方體的體積計算公式,要研究體積與長、寬、高的關(guān)系。教學例9不要急于得出體積公式,而要在擺長方體與填表的基礎(chǔ)上,著力引導學生獲得上述兩點感受,形成繼續(xù)研究的心向。即使有學生從例9已經(jīng)看出了體積公式,也要引導他們通過例10進一步驗證公式,理解體積與長、寬、高之間的必然聯(lián)系,感受數(shù)學的嚴謹及結(jié)論的確定性。

  例10根據(jù)圖示的長、寬、高,用1立方厘米的正方體擺出三個長方體;顒拥谋举|(zhì)是用體積單位測量物體的體積。對學習的要求是先想怎樣擺、需要幾個正方體,再按想法擺,驗證想的是否可行、是否正確。三個長方體是精心設(shè)計的。左起第一個長方體的寬與高都是1厘米,只要把4個正方體擺成一行,能夠體會長方體長的數(shù)量與沿著長擺的體積單位個數(shù)之間有必然聯(lián)系。第二個長方體的高1厘米,只要把正方體擺成一層。體會長方體寬的數(shù)量是幾,沿著寬應(yīng)該擺出幾行體積單位。而長與寬的乘積,就是一層里體積單位的個數(shù)。第三個長方體高2厘米,要把正方體擺成2層,體會長方體高的數(shù)量與擺的體積單位的層數(shù)是一致的。教材在各個長方體里預設(shè)的教學內(nèi)涵,規(guī)劃了各次實物操作時的思維重點,有助于學生逐漸建構(gòu)數(shù)學認識。擺各個長方體獲得的體會,就是對長方體的體積與它的長、寬、高關(guān)系的理解。教材讓學生說說在兩道例題中的發(fā)現(xiàn),是引導他們回顧、反思例題的學習,進一步清楚這些體會,并把這些體會有條理地組織起來,得出長方體的體積公式。

  抓住正方體12條棱長度相等的特點,能從長方體的體積公式推導出正方體的體積公式。教材要求學生主動經(jīng)歷推導過程,在獨立思考之后小組交流。推導的思維方法是多樣的,從正方體具有長方體的所有特征出發(fā),演繹推理能完成推導,從再現(xiàn)測量體積活動出發(fā),

  類比推理能完成推導: 用體積單位測量正方體的體積,每行擺的個數(shù)、擺的行數(shù)、擺的層數(shù)都與正方體的棱長相等。因此,正方體的體積=棱長×棱長×棱長。

  寫正方體體積的字母公式時,根據(jù)字母表示數(shù)的書寫規(guī)則,如果把乘號簡寫為“·”,那么V=a·a·a;如果乘號省去不寫,要寫成V=a3。一般采用后一種寫法,a3以及它表示的意思都是新知識。第26頁“練一練”第2題,算幾個整數(shù)或小數(shù)的立方的得數(shù),鞏固對立方的認識。解決正方體體積的實際問題,經(jīng)常會列出和計算這樣的算式。其中13、103和0.13要提醒學生特別注意,防止算錯。

  2. 深入理解體積公式。

  長方體與正方體的體積公式,除了有一般與特殊的關(guān)系(正方體是特殊的長方體,正方體的體積公式是長方體體積公式的特例),還有相同的內(nèi)容。認識它們的相同,能簡化知識結(jié)構(gòu)。第27頁教學這個內(nèi)容,分三步進行: 第一步認識長方體和正方體的底面。教材在長方體、正方體的直觀圖上,用涂顏色和文字標注等辦法呈現(xiàn)它們的底面,讓學生看到“底面”一般指長方體、正方體的下面(認識長方體時曾指過上、下、前、后、左、右三組相對的面)。第二步認識底面積。長方體或正方體的底面,都是表面的一部分。教材指出,長方體和正方體底面的面積,叫做它們的底面積,幫助學生建立底面積的概念,要求學生研究計算底面積的方法,聯(lián)系求表面積的經(jīng)驗,得出長方體的底面積=長×寬,正方體的底面積=棱長×棱長,進一步加強對底面的認識。第三步演變原來的體積公式。在長方體的體積=長×寬×高里,如果把“長×寬”看成先算底面積,那么體積公式可以演變成“底面積×高”。在正方體的體積=棱長×棱長×棱長里,如果把“棱長×棱長”看作先算底面積,那么體積公式也演變成“底面積×高”。由于長方體、正方體的體積公式都能演變成“底面積×高”,因而獲得了統(tǒng)一。

  把長方體和正方體的體積公式統(tǒng)一成“底面積×高”,有兩點教學意義: 第一是深入理解原有的兩個體積公式。長、寬、高或棱長都是立體的棱的長度,決定立體的大小。長×寬或棱長×棱長得到長方體或正方體的底面積,底面積×高得到的是體積。這里面蘊含了長度、面積、體積之間的聯(lián)系。第二是重組知識結(jié)構(gòu)。把兩個體積公式合并成一個公式,其本身是一次認知簡化。而且,“底面積×高”還是計算所有直柱體體積的方法。無論底面是直線圖形的柱體,還是曲線圖形的柱體,體積公式都是V=Sh。前一點意義,在現(xiàn)在的教學中就能實現(xiàn);后一點意義,在以后的教學中會逐漸體現(xiàn)出來。

  練習六第5題已知一根長方體木料的長與橫截面的邊長,“橫截面”是第一次出現(xiàn)的概念,教材利用示意圖幫助學生理解橫截面的含義。先算出橫截面的面積,再算木料的體積,有兩點意圖:一是通過計算橫截面的面積,進一步認識這個面;二是體會長方體、正方體的體積公式還能演變成長×橫截面面積、橫截面面積×棱長,從而對體積公式有更充實、更豐富的體驗。

  七、 計算,遷移——理解體積單位的進率。

  在初步掌握長方體、正方體的體積公式以后,教學體積單位的進率,采用讓學生經(jīng)過計算發(fā)現(xiàn)和理解的教學方法。教材第30~32頁,先教學相鄰體積單位間的進率,再教學簡單的換算。

  1. 求兩個同樣大小的正方體的體積,發(fā)現(xiàn)和理解進率。

  例11的圖里有兩個正方體,一個棱長1分米,另一個棱長10厘米。從1分米=10厘米,知道兩個正方體的棱長相等,進而判斷它們的體積相等。這兩個正方體的體積分別是1立方分米與1000立方厘米,從它們體積相等,推理得出1立方分米=1000立方厘米,這就是立方分米與立方厘米的進率。

  用同樣的方法,通過棱長1米和棱長10分米的正方體,可以得到立方米和立方分米間的進率。

  在教學進率的過程中,作出兩個正方體體積相等的判斷是關(guān)鍵。因為1立方分米=1000立方厘米、1立方米=1000立方分米,首先表達的是兩個棱長相等的正方體的體積相等,然后才本質(zhì)地表達出相鄰兩個體積單位的進率。后者是這部分教材的重點所在。

  練習七第1題的表格里已經(jīng)填了米、分米、厘米三個長度單位以及一個面積單位與一個體積單位,要求學生繼續(xù)寫出其他面積單位和體積單位,還要寫出表格里相鄰的長度、面積、體積單位的進率。這道題對長度、面積、體積三類計量單位從名稱和進率兩個方面進行初步的整理。填表能引起學生對這些單位概念的回憶,如邊長1米的正方形面積是1平方米,棱長1米的正方體體積是1立方米。從而體驗米、平方米、立方米是不同的概念,也是有對應(yīng)關(guān)系的單位。有了這些體驗,在測量或計量長度、面積、體積時,就能正確應(yīng)用單位名稱。通過填表能發(fā)現(xiàn)規(guī)律,如米、分米、厘米這三個長度單位,相鄰單位間的進率是10;平方米、平方分米、平方厘米這三個面積單位,相鄰單位間的進率是100(10×10);立方米、立方分米、立方厘米這三個體積單位,相鄰單位間的進率是1000(10×10×10)。理解這些規(guī)律,有助于記憶進率。

  2. 應(yīng)用進率進行簡單的換算。

  對使用不同單位的體積進行換算,是應(yīng)用進率的活動。本單元里的單位換算是比較簡單的,只在兩個相鄰單位間進行,而且都是單名數(shù)的換算。

  “練一練”是體積單位的換算,先把較大單位的數(shù)量換算成較小單位的數(shù)量,再把較小單位的數(shù)量換算成較大單位的數(shù)量。類似的這些換算在長度單位、面積單位、質(zhì)量單位里都進行過,學生有換算的經(jīng)驗,知道可以利用小數(shù)點向右或向左移動位置的辦法解決。完成這里的“練一練”,可以把已有經(jīng)驗遷移過來,著重思考把小數(shù)點向哪邊移動幾位,并對這樣做的原因作出解釋。

  練習七第2題把面積單位的換算與體積單位的換算對比著進行,目的是體會它們在換算時的相同與不同。無論哪類計量單位,只要是較大單位的數(shù)量換算成較小單位,都把小數(shù)點向右移動;只要是較小單位的數(shù)量換算成較大單位,都把小數(shù)點向左移動,這是規(guī)律,是共性。而小數(shù)點移動的位數(shù)是由進率決定的,進率分別是10、100、1000,小數(shù)點分別移動一位、兩位、三位。獲得這些體會的價值,已經(jīng)遠遠超出知識與技能的范疇,更是數(shù)學思考、解決問題方面的發(fā)展。第4題里升與毫升的換算,四年級(下冊)教材里曾經(jīng)進行過,F(xiàn)在進行這些換算,不限于整數(shù)范圍內(nèi)實施,對問題及其解決方法的理解也比過去深刻。把升為單位的數(shù)量改寫成立方分米為單位,把毫升為單位的數(shù)量改寫成立方厘米為單位,能加強1升等于1立方分米、1毫升等于1立方厘米的認識,更好地把體積單位組織起來,便于記憶和應(yīng)用。

  八、 拼拼,想想——體驗表面積的變化。

  實踐活動《表面積的變化》專題研究幾個相同的正方體(或長方體)拼起來,得到的立體與原來幾個正方體(長方體)表面積之和的關(guān)系,發(fā)現(xiàn)并理解其中的變化規(guī)律,發(fā)展空間觀念。

  “拼拼算算”這個欄目,先研究用正方體拼的情況,再研究用長方體拼的情況,后一類情況比前一類復雜。研究正方體拼成長方體,從兩個正方體開始。選用體積1立方厘米的正方體,它的每個面的面積都是1平方厘米,有利于體會到表面積的變化。

  用兩個相同的正方體拼出長方體,可以上、下兩個面拼,也可以左、右兩個面拼,還可以前、后兩個面拼。從現(xiàn)象看,似乎拼法不同。其實,各種拼法沒有實質(zhì)性的差別。首先是拼成的長方體的體積是2個正方體體積的和,每個正方體的體積是1立方厘米,長方體的體積是2立方厘米。其次是每種拼法都減少原來的2個面,這是正方體拼成長方體時發(fā)生的變化,也是這次實踐活動的研究內(nèi)容。在兩個正方體拼成長方體的圖示中,可以體會減少的2個面分別在兩個正方體上。拼的時候,這兩個面相重疊。

  用3個、4個甚至更多個相同的正方體擺成一行,拼成長方體,表面積比原來減少幾個正方形面的面積?教材讓學生邊操作、邊觀察,邊思考、邊填表。發(fā)現(xiàn)的規(guī)律要幫助學生分兩個層次歸納和交流:一是關(guān)于拼的步驟。2個正方體一步就能拼成長方體,3個正方體要分兩步拼,4個正方體要分三步拼……二是關(guān)于減少的面積。2個正方體拼,比原來減少2個(一對)正方形面的面積;3個正方體拼,比原來減少4個(兩對)正方形面的面積;4個正方體拼,比原來減少6個(三對)正方形面的面積……

  用兩個相同的長方體拼,情況比較復雜。由于長方體三組面的形狀、大小不同,只有把完全相同的兩個面重疊,才能拼出較大的長方體。因此,一般有三種不同的拼法。教材讓學生通過操作,了解三種拼法。再看著各種拼法的示意圖,思考每種拼法減少的面積。在體會三種拼法減少的面積不同之后,找出拼成的大長方體中,哪個表面積最大,哪個最小。

  第37頁的示意圖中,左邊拼法的兩個長方體把“5×4”的面重疊,拼成的大長方體的表面積比原來減少兩個“5×4”;中間拼法的兩個長方體把“5×3”的面重疊,表面積減少2個“5×3”;右邊拼法的表面積減少2個“4×3”。這些都是學生在操作與看圖中能夠理解的,也是交流的主要內(nèi)容。指出表面積最大和最小的大長方體,要進行這樣的推理:拼的時候減少的面積最少,拼成的大長方體的表面積最大。反之,減少的面積最多,拼成的大長方體的表面積最小。只要教師稍加引領(lǐng)或點撥,學生都能像這樣想。而且計算三個大長方體的表面積比原來減少多少,都有捷徑可走。

  “拼拼說說”欄目里變化了拼法,不但把正方體拼成一行,還拼成兩行。仔細地體會拼的活動和研究教材里的示意圖,左圖可看作有7次正方體的兩兩相拼(如圖),每次減少面積2平方厘米,大長方體的表面積比原來減少7個2平方厘米。右圖中可看作有5次正方體的兩兩相拼(如圖),大長方體的表面積比原來減少5個2平方厘米。所以,右邊的長方體表面積比左邊長方體大4平方厘米。

  為10盒火柴設(shè)計一個最節(jié)省的包裝方案,是應(yīng)用前面拼正方體或長方體的經(jīng)驗:重疊的面越大,表面積減少越多;兩兩相拼的次數(shù)多,減少的面積也多。這兩條經(jīng)驗要靈活地、綜合地應(yīng)用,才能得到理想的方案。這對空間觀念和思維能力是很好的鍛煉。

 

來源:小學數(shù)學教學網(wǎng)

   歡迎訪問奧數(shù)網(wǎng),您還可以在這里獲取百萬真題,2023小升初我們一路相伴。>>[點擊查看]

年級

科目

類型

分類

搜索

  • 歡迎掃描二維碼
    關(guān)注奧數(shù)網(wǎng)微信
    ID:aoshu_2003

  • 歡迎掃描二維碼
    關(guān)注中考網(wǎng)微信
    ID:zhongkao_com

名師公益講座

本周新聞動態(tài)

重點中學快訊

奧數(shù)關(guān)鍵詞

廣告合作請加微信:17310823356

京ICP備09042963號-15 京公網(wǎng)安備 11010802027854號

違法和不良信息舉報電話:010-56762110 舉報郵箱:wzjubao@tal.com

奧數(shù)版權(quán)所有Copyright@2005-2021 www.lczxdz.com. All Rights Reserved.