數(shù)學(xué)邏輯推理題31(猴子和桃子)
來源:本站原創(chuàng) 2009-05-18 15:07:09
有5只猴子在海邊發(fā)現(xiàn) 一堆桃子,決定第二天來平分.第二天清晨,第一只猴子最早來到,它左分右分分不開,就朝海里扔了一只,恰好可以分成5份,它拿上自己的一份走了.第 2,3,4,5只猴子也遇到同樣的問題,采用了同樣的方法,都是扔掉一只后,恰好可以分成5份.問這堆桃子至少有多少只?
【解答】這堆桃子至少有3121只。
第一只猴子扔掉1個(gè),拿走624個(gè),余2496個(gè);
第二只猴子扔掉1個(gè),拿走499個(gè),余1996個(gè);
第三只猴子扔掉1個(gè),拿走399個(gè),余1596個(gè);
第四只猴子扔掉1個(gè),拿走319個(gè),余1276個(gè);
第五只猴子扔掉1個(gè),拿走255個(gè),余4堆,每堆255個(gè)。
如果不考慮正負(fù),-4為一解
考慮到要5個(gè)猴子分,假設(shè)分n次。
則題目的解: 5^n-4
本題為5^5-4=3121.
設(shè)共a個(gè)桃,剩下b個(gè)桃,則b=(4/5)((4/5)((4/5)((4/5)((4/5)(a-1)-1)-1)-1)-1)-1),即b=(1024a-8404)/3125 ; a=3b+8+53*(b+4)/1024,而53跟1024不可約,則令b=1020可有最小解,得a=3121 ,設(shè)桃數(shù)x,得方程
4/5{4/5{4/5[4/5(x-1)-1]-1}-1}=5n
展開得
256x=3125n+2101
故x=(3125n+2101)/256=12n+8+53*(n+1)/256
因?yàn)?3與256不可約,所以判斷n=255有一解.x為整數(shù),等于3121
相關(guān)文章
- 小學(xué)1-6年級(jí)作文素材大全
- 全國小學(xué)升初中語數(shù)英三科試題匯總
- 小學(xué)1-6年級(jí)數(shù)學(xué)天天練
- 小學(xué)1-6年級(jí)奧數(shù)類型例題講解整理匯總
- 小學(xué)1-6年級(jí)奧數(shù)練習(xí)題整理匯總
- 小學(xué)1-6年級(jí)奧數(shù)知識(shí)點(diǎn)匯總
- 小學(xué)1-6年級(jí)語數(shù)英教案匯總
- 小學(xué)語數(shù)英試題資料大全
- 小學(xué)1-6年級(jí)語數(shù)英期末試題整理匯總
- 小學(xué)1-6年級(jí)語數(shù)英期中試題整理匯總
- 小學(xué)1-6年語數(shù)英單元試題整理匯總