例1 觀察下面由點組成的圖形(點群),請回答:
(1)方框內(nèi)的點群包含多少個點?
(2)第(10)個點群中包含多少個點?
(3)前十個點群中,所有點的總數(shù)是多少?
解:數(shù)一數(shù)可知:前四個點群中包含的點數(shù)分別是:
1,4,7,10.
可見,這是一個等差數(shù)列,在每相鄰的兩個數(shù)中,后一個數(shù)都比前一個數(shù)大3(即公差是3).
。1)因為方框內(nèi)應(yīng)是第(5)個點群,它的點數(shù)應(yīng)該是10+3=13(個).
。2)列表,依次寫出各點群的點數(shù),
可知第(10)個點群包含有28個點.
(3)前十個點群,所有點的總數(shù)是:
1+4+7+10+13+16+19+22+25+28=145(個)
例2 圖6—2表示“寶塔”,它們的層數(shù)不同,但都是由一樣大的小三角形擺成的.仔細觀察后,請你回答:
。1)五層的“寶塔”的最下層包含多少個小三角形?
(2)整個五層“寶塔”一共包含多少個小三角形?
(3) 從第(1)到第(10)的十個“寶塔”,共包含多少個小三角形?
解:(1)數(shù)一數(shù)“寶塔”每層包含的小三角形數(shù):
可見1,3,5,7是個奇數(shù)列,所以由這個規(guī)律猜出第五層應(yīng)包含的小三角形是9個.
(2)整個五層塔共包含的小三角形個數(shù)是:
1+3+5+7+9=25(個).
。3)每個“寶塔”所包含的小三角形數(shù)可列表如下:
由此發(fā)現(xiàn)從第(1)到第(10)共十個“寶塔”所包含的小三角形數(shù)是從1開始的自然數(shù)平方數(shù)列前十項之和:
例3 下面的圖形表示由一些方磚堆起來的“寶塔”.仔細觀察后,請你回答:
。1)從上往下數(shù),第五層包含幾塊磚?
。2)整個五層的“寶塔”共包含多少塊磚?
(3)若另有一座這樣的十層寶塔,共包含多少塊磚?
解:(1)數(shù)一數(shù),“寶塔”每層包含的方磚塊數(shù):
可見各層的方磚塊數(shù)組成自然數(shù)平方數(shù)列,按此規(guī)律,第五層應(yīng)包含的方磚塊數(shù)是:
5×5=25(塊).
。2)整個五層“寶塔”共包含的方磚塊數(shù)應(yīng)是從1開始的前五個自然數(shù)的平方數(shù)相加之和,即:
1+4+9+16+25=55(塊).
。3)根據(jù)上面得到的規(guī)律,可求出十層寶塔所包含的方磚的塊數(shù):