小學(xué)六年級奧數(shù)專題之組合
1.從分別寫有2、4、6、8、10的五張卡片中任取兩張,作兩個(gè)一位數(shù)乘法,問:有多少種不同的乘法算式?有多少個(gè)不同的乘積?
2.從分別寫有4、5、6、7的四張卡片中任取兩張作兩個(gè)一位數(shù)加法。問:有多少種不同的加法算式?有多少個(gè)不同的和?
3.從分別寫有3、4、5、6、7、8的六張卡片中任取三張,作三個(gè)一位數(shù)的乘法。問:有多少種不同的乘法算式?有多少個(gè)不同的乘積?
4.在一個(gè)圓周上有10個(gè)點(diǎn),以這些點(diǎn)為端點(diǎn)或頂點(diǎn),可以畫出多少條或多少個(gè)不同的(1)直線;(2)三角形;(3)四邊形。
5.在圖6-11的四幅分圖中分別有多少個(gè)不同的線段、角、矩形和長方體?
6.直線a、b上分別有5個(gè)點(diǎn)和4個(gè)點(diǎn)(圖6-12),以這些點(diǎn)為頂點(diǎn),可以畫出多少個(gè)不同的(1)三角形;(2)四邊形。
7.在一個(gè)半圓環(huán)上共有12個(gè)點(diǎn)(圖6-13),以這些點(diǎn)為頂點(diǎn)可畫出多少個(gè)三角形?
8.三條平行線分別有2、4、3個(gè)點(diǎn)(圖6-14),已知在不同直線上的任意三個(gè)點(diǎn)都不共線。問:以這些點(diǎn)為頂點(diǎn)可以畫出多少個(gè)不同的三角形?
9.從15名同學(xué)中選5名參加數(shù)學(xué)競賽,求分別滿足下列條件的選法各有多少種:
(1)某兩人必須入選;
(2)某兩人中至少有一人入選;
(3)某三人中恰入選一人;
(4)某三人不能同時(shí)都入選。
10.學(xué)校乒乓球隊(duì)有10名男生、8名女生,現(xiàn)在要選8人參加區(qū)里的比賽,在下列條件下,分別有多少種選法:
(1)恰有3名女生入選;
(2)至少有兩名女生入選;
(3)某兩名女生、某兩名男生必須入選;
(4)某兩名女生、某兩名男生不能同時(shí)都入選;
(5)某兩名女生、某兩名男生最多入選兩人;
(6)某兩名女生最多入選一人,某兩名男生至少入選一人。