第一講 整數(shù)問題:特殊的自然數(shù)之一
來源:www.jiajiao100.com 文章作者:dfss 2008-08-07 14:48:45
A1-001 求一個(gè)四位數(shù),它的前兩位數(shù)字及后兩位數(shù)字分別相同,而該數(shù)本身等于一個(gè)整數(shù)的平方.
【題說】 1956年~1957年波蘭數(shù)學(xué)奧林匹克一試題1.
x=1000a+100a+10b+b
=11(100a+b)
其中0<a≤9,0≤b≤9.可見平方數(shù)x被11整除,從而x被112整除.因此,數(shù)100a+b=99a+(a+b)能被11整除,于是a+b能被11整除.但0<a+b≤18,以a+b=11.于是x=112(9a+1),由此可知9a+1是某個(gè)自然數(shù)的平方.對(duì)a=1,2,…,9逐一檢驗(yàn),易知僅a=7時(shí),9a+1為平方數(shù),故所求的四位數(shù)是7744=882.
A1-002 假設(shè)n是自然數(shù),d是2n2的正約數(shù).證明:n2+d不是完全平方.
【題說】 1953年匈牙利數(shù)學(xué)奧林匹克題2.
【證】 設(shè)2n2=kd,k是正整數(shù),如果 n2+d是整數(shù) x的平方,那么
k2x2=k2(n2+d)=n2(k2+2k)
但這是不可能的,因?yàn)?/FONT>k2x2與n2都是完全平方,而由k2<k2+2k<(k+1)2得出k2+2k不是平方數(shù).
A1-003 試證四個(gè)連續(xù)自然數(shù)的乘積加上1的算術(shù)平方根仍為自然數(shù).
【題說】 1962年上海市賽高三決賽題 1.
【證】 四個(gè)連續(xù)自然數(shù)的乘積可以表示成
n(n+1)(n+2)(n+3)=(n2+3n)(n2+8n+2)
=(n2+3n+1)2-1
因此,四個(gè)連續(xù)自然數(shù)乘積加上1,是一完全平方數(shù),故知本題結(jié)論成立.
A1-004 已知各項(xiàng)均為正整數(shù)的算術(shù)級(jí)數(shù),其中一項(xiàng)是完全平方數(shù),證明:此級(jí)數(shù)一定含有無窮多個(gè)完全平方數(shù).
【題說】 1963年全俄數(shù)學(xué)奧林匹克十年級(jí)題2.算術(shù)級(jí)數(shù)有無窮多項(xiàng).
【證】 設(shè)此算術(shù)級(jí)數(shù)公差是 d,且其中一項(xiàng) a=m2(m∈N).于是
a+(2km+dk2)d=(m+kd)2
對(duì)于任何k∈N,都是該算術(shù)級(jí)數(shù)中的項(xiàng),且又是完全平方數(shù).
A1-005 求一個(gè)最大的完全平方數(shù),在劃掉它的最后兩位數(shù)后,仍得到一個(gè)完全平方數(shù)(假定劃掉的兩個(gè)數(shù)字中的一個(gè)非零).
【題說】 1964年全俄數(shù)學(xué)奧林匹克十一年級(jí)題 1.
【解】 設(shè) n2滿足條件,令n2=100a2+b,其中 0<b<100.于是 n>10a,即 n≥10a+1.因此
b=n2100a2≥20a+1
由此得 20a+1<100,所以a≤4.
經(jīng)驗(yàn)算,僅當(dāng)a=4時(shí),n=41滿足條件.若n>41則n2-402≥422-402>100.因此,滿足本題條件的最大的完全平方數(shù)為412=1681.
A1-006 求所有的素?cái)?shù)p,使4p2+1和6p2+1也是素?cái)?shù).
【題說】 1964年~1965年波蘭數(shù)學(xué)奧林匹克二試題 1.
【解】 當(dāng)p≡±1(mod 5)時(shí),
相關(guān)文章
- 小學(xué)1-6年級(jí)作文素材大全
- 全國小學(xué)升初中語數(shù)英三科試題匯總
- 小學(xué)1-6年級(jí)數(shù)學(xué)天天練
- 小學(xué)1-6年級(jí)奧數(shù)類型例題講解整理匯總
- 小學(xué)1-6年級(jí)奧數(shù)練習(xí)題整理匯總
- 小學(xué)1-6年級(jí)奧數(shù)知識(shí)點(diǎn)匯總
- 小學(xué)1-6年級(jí)語數(shù)英教案匯總
- 小學(xué)語數(shù)英試題資料大全
- 小學(xué)1-6年級(jí)語數(shù)英期末試題整理匯總
- 小學(xué)1-6年級(jí)語數(shù)英期中試題整理匯總
- 小學(xué)1-6年語數(shù)英單元試題整理匯總