三十六軍官問題
來源:數(shù)學資源庫 2008-05-07 18:12:04
大數(shù)學家歐拉曾提出一個問題:即從不同的6個軍團各選6種不同軍階的6名軍官共36人,排成一個6行6列的方隊,使得各行各列的6名軍官恰好來自不同的軍團而且軍階各不相同,應如何排這個方隊?如果用(1,1)表示來自第一個軍團具有第一種軍階的軍官,用(1,2)表示來自第一個軍團具有第二種軍階的軍官,用(6,6)表示來自第六個軍團具有第六種軍階的軍官,則歐拉的問題就是如何將這36個數(shù)對排成方陣,使得每行每列的數(shù)無論從第一個數(shù)看還是從第二個數(shù)看,都恰好是由1、2、3、4、5、6組成。歷史上稱這個問題為三十六軍官問題。
三十六軍官問題提出后,很長一段時間沒有得到解決,直到20世紀初才被證明這樣的方隊是排不起來的。盡管很容易將三十六軍官問題中的軍團數(shù)和軍階數(shù)推廣到一般的n的情況,而相應的滿足條件的方隊被稱為n階歐拉方。歐拉曾猜測:對任何非負整數(shù)t,n=4t+2階歐拉方都不存在。t=1時,這就是三十六軍官問題,而t=2時,n=10,數(shù)學家們構造出了10階歐拉方,這說明歐拉猜想不對。但到1960年,數(shù)學家們徹底解決了這個問題,證明了n=4t+2(t≥2)階歐拉方都是存在的。
相關文章
- 小學1-6年級作文素材大全
- 全國小學升初中語數(shù)英三科試題匯總
- 小學1-6年級數(shù)學天天練
- 小學1-6年級奧數(shù)類型例題講解整理匯總
- 小學1-6年級奧數(shù)練習題整理匯總
- 小學1-6年級奧數(shù)知識點匯總
- 小學1-6年級語數(shù)英教案匯總
- 小學語數(shù)英試題資料大全
- 小學1-6年級語數(shù)英期末試題整理匯總
- 小學1-6年級語數(shù)英期中試題整理匯總
- 小學1-6年語數(shù)英單元試題整理匯總